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Preface

The purpose of this study was to investigate the optimization of stochastic
response surfaces with linear programs. It was found that using the traditional approach
of estimating a response surface and using it as the objective function of a linear program
yiclded a bias in the mean solution. Also, nonoptimal extreme points have a large
probability of being chosen. This research investigated a method to overcome these

disadvantages and obtain an improved solution.
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\ Abstract

This research investigated an alternative to the traditional approaches of
optimizing a stochastic response surface subject to constraints. This rescarch
investigated the bias in the expected value of the solution, possible alternative decision-
variable settings, and a method to improve the solution. A three step process is presented
to evaluate stochastic response surfaces subject to constraints. Step 1 is tousea
traditional approach to estimate the response surface and a covariance matrix through
regression. Step 2 samples the objective function of the linear program (i.c., response
surface) and identifies the extreme points visited. Step 3 presents a method to estimate

the optimal extreme point and present that information to a decision maker.
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1 Introduction

1.1 Background

Constrained and unconstrained optimization is a diverse and growing ficld with
applications in many arcas. Two key optimization arcas of interest in this 1csearch were:
optimization of simulation output with constraints and stochastic programming.

Responsc surfacc mcthodology can be used to optimize a system modeled by a
simulation. Responsc surface methodology typically incorporates three areas:
cxperimental design, regression analysis, and optimization. The response surface (i.c.,
the fitted regression modcl) generated from a stochastic simulation is a metamodel that
approximates the systcm being simulated. The coefficicnts of the response surface
representing the simulation in a design region are random variables. The random, or
stochastic, nature of the coefficients in the response surface is at the core of this research.
Typically, aftcr establishing and validating a responsc surface the analyst ignorcs its
stochastic naturc and cmploys it to cstimate optimum operational conditions in a resource
constrained environment (11:138).

Stochastic programming, usually a completcly separate field from response
surfacc methodology, concentrates on the stochastic nature of elements in math
programming problems. One aspect of stochastic programming concentrates on the
random nature of the coefficients in the objective function in a lincar program while
assuming the constraints are deterministic. A literature review suggests there is little
incorporation of stochastic programming to simulation optimization; the rescarch done is
limited in scope and solves only individual problems. No research effort has been found

that investigates the general process. Davis and West observe that:




...recent research has demonstrated that there is indeed a role for the employment
of mathematical programming procedures with simulations... in modeling
situations where uncestaintics are small, mathematical programming would be the
preferred choice. However, many decisionmaking problems do not meet this
criterion. For example, long-term production/inventory planning is often
analyzed using a mathcmatical programming formulation even though this
problem is known for its unccrtainties arising in long-term demand forecasts, in
the costs of input material, and in manufacturing productivities... Another classic
problem for which considerable unccertaintics often exist is the investment
portfolio selection problem... For any problem with severe uncertaintics the
adopted approach of merging simulation with mashematical programming can be
applied. (5:200,209).

1.2 Problem Statement

The goals of this rescarch are threcfold. First, this rescarch will characterize the
impact of the stochastic nature of the responsc surface on the optimization of a
simulation with multiple constraints. Sccond, this rescarch will develop a means to
identify the "truc" optimum point in practice. Third, this rescarch will develop a method
to increase confidence in the point estimate on the optimal answer to the constrained

optimization problem.

1.3 Objectives & Related Methods

The goals of this research was met by accomplishing the following objectives.
Objective 1. To characterize the impact of the stochastic nature of the objective function
(response surface) coefficients on the distribution of yA (the optimal solution to the linear

programming problem) and identify both the basis and extreme point changes.

Methods:
1. Generated a variety of linear programming problems to investigate the topic.
2. Wrote a computer program that performs a Monte Carlo process on the linear

program by varying the objective function coefficients and error term to be




sampled. Collected data on the distribution of 7%, basis changes, and sampled

optimum extreme points.

3. Defined a variety of variance-covariance matrices (62(X'X)"1) to generate the
multivariate normal distribution of the coefficients.

4. Defined five noise levels to test,

5. Ran a Monte Carlo procedure and cvaluate the mean and variance for cach

cxtreme point, basis, and for the overall solution.

Objective 2: Investigate a method to design an cxperiment on the response surface
cocfficicnits that samples the response surface in an effective way.
Mcthod: Used a Box-Behnken design and investigated modifications to the design that

better sampled the response surface.

Objective 3: Evaluated ways to better estimate the "true" optimal extreme point, and
present the data, to a decision maker, in an efficient way.
Methods:
1. Used a ranking and sclection procedure to screen extreme points and identify
the "best" extreme point.

2. Investigated presentation of data through a histogram.




2 Literature Review

2.1 Introduction

The following paragraphs will review literature pertinent to optimization of a
stochastic response surface subject to multiple constraints. Specifically, the discussion
covers the topics of experimental design, constrained simulation optimization, and

stochastic programming with Monte Carlo simulation.

2.2 Discussion

2.2.1 Experimental Design

Much rescarch has been donce on experimental designs since the 1950s (7:571).
The basic goal of expcrimental design is to choose the scttings of the factor Ievels in a sct
of experiments. In simulation, experimental design is the process of developing a
scheme to conduct an experiment on a simulation and collect output information deriving
the maximum amount of useful information with a minimum expenditure of resources.
In experimental design jargon, the input variables to the simulation are factors and the
levels (values) those variables can take are treatments.

Experimental design in simulation is distinguished from experimental design in
gencral by two things. First, in simulation the analyst specifies the factors and treatments
at the beginning to get the optimal design. Second, the input random variables for each
simulation experiment are controlled by the analyst who can exploit this by making
comparisons between experiments more precise, such as using the same pseudo-random
number stream for different experiments (i.e., using common random numbers).

Typical objectives of experimental design in a simulation are to

1. Understand the effect of the factors on the experimental output.

2. Estimate the parameters of interest.




3. Make a selection from a set of alternatives.

4, Find the treatment levels for all factors that produce the optimum response

(3:105-223).

There arc many types of designs, from the simple 21 factorial to specialty designs
to measure lack of fit, fit second order models, or control variance. The list of
experimental designs is extensive, although "the central composite [design] is used more
than any other family of RSM designs" (11:147).

A key influence in the stability in predicted variance is the rotatability of the
design: while a high degree of rotatability is desirable, a perfectly rotatability design is
not needed (11:138). Rotatability refers to the way variance propagates through the
design; in a perfectly rotatable design variance is only a function of the distance from the
center of the design. In other words, in a perfectly rotatable design, variance can be
defined as increasing in concentric circles expanding out from the center of the design.
In a ncar-rotatable design the variance can be thought of in the same way except the
circles arc not perfect, but slightly clliptical. In light of variance considerations, Myers,

Khuri and Carter conclude

...the RSM user needs to learn from the Taguchi approach that systcm variability
should be a major component in the analysis. A similar argument can be made
for consideration of the distribution of variance of the prediction in the
assessment of cxperimental designs. Often the success of the RSM endeavor is
dependent on the properties of y [hat] at different locations in the design space.
Many standard designs have prediction variances which incrcase dramatically as
one gets close to the design parameter. As a result, any conclusions drawn
(regarding choice of optimal or improvements in operating conditions)
concerning response near the design boundary are suspect. Yet we see very litle
that deals with this in design assessment or comparisons among designs. We too
often evaluate a design on the basis of one number (say, D-efficiency) when the
important aspects of behavior are multidimensional. (11:152)

Biles and Swain observe "the n-dimensional simplex design, which employs n+1

design points at the vertices of a regular simplex, gives the greatest efficiency in terms of




information per design point " (2:138). Experimental design is a diverse area; only

through investigation will identification of the family of "best" designs occur.

2.2.2 Constrained Simulation Optimization

Classical simulation optimization is a broad field. Typical approaches to
optimization inclade heuristic searches, complete enumeration, random searches, stecpest
ascent, coordinate searches, pa:tern searches and many others (6:117-121).

Biles and Swain present scveral strategics for constrained simulation optimization
that appear to be representative of the main constraincd simulation optimization cfforts
going on today. They fit and validatc a response surface using an n-dimensional simplex,
biradial, or cquiradial design. They account for the variance of the crror term, but they
assume the "response surfaces are the cxpected values of the obscrved responses.”
(2:135). They do not account for the stochastic nature of the response surface, but
employ a recursive method by applying an optimization procedure and then returning to
the simulation model until the optimal criteria are met. Their procedures include direct
scarch techniques, first-order response surface, and second-order response surface
procedures. The type of constraints Biles and Swain used are cither simple (upper and
lower bounds) or multiple (e.g., budget or resource) constraints (2:135-137),

The choice between point estimation verses interval estimation, while important

to the analyst, has only recently been addressed:

Many users of RSM allow conclusions to be drawn concerning the nature of a
response surface and the location of optimal response without taking into account
the distributional properties of the estimated attributes of the underlying response
surface. Although the distribution of these quantities has not been considered
directly, efforts have been made to develop interval estimates. Box and Hunter
(1954) used a version of Fieller's theorem to develop a 100(1 - alpha)%
confidence region for the location of the stationary point. The construction of a
confidence interval around the response at the stationary point of the true surface
has only recently been a subject of interest in the statistical literature. Khuri and
Conlon (1981) gave an expression for the bounds of an interval conditional on the
estimated location of the stationary point. (11:146)




The experimental design impacts the distributional form of the underlying data, which in
turn, ""has an impact on the estimation of the model parameters and on the inferences
drawn from an RSM analysis" (11:146).

Constrained optimization of stochastic simulations through linear programming is
starting to appear in the literaturc, but no literature has been found that evaluates the
impact of the stochastic nature of the responsc surface in the general case. Myers, Khuri
and Carter support this: "Nearly all practical RSM problems are truly multiple response
in nature. Sophisticated ways of solving [stochastic] multiple-response problems are not

gencrally well known, however" (11:147).

2.2.3 Stochastic Programming

Stochastic programming considers threc stochastic arcas of math programming:
the objective function ¢Lx, constraint matrix A, and the right hand side b vector.
Traditionally, stochastic programming has not been incorporated in simulation
optimization analysis.

There are three classical approaches to solving stochastic programming problems
where the coefficients vary: expected value, "Fat," and "Slack" approaches. The
cxpected value approach uses the point estimate for the coefficients to solve the math
programming problem. The "Fat" approach chooses a pessimistic value for the
cocfficients in the math programming problem. The "Slack" solution method assumes
randomness in the constraint matrix and the right hand side and adds a penalty function
to the objective function. The "Slack" method is a two-stage problem that assumes the
decisionmaker can adjust a previous decision (9:463-470). These three approaches to
stochastic programming are used when the coefficients are either random or constrained
to a given set. Another area of stochastic programming is chance constrained

optimization: "[In this] approach, it is not required that the constraints should always




hold, but we shall be satisfied if they hold in a given proportion of cases or, to put it
differently, if they hold with given probabilities" (13:75).

Most analytical methods assume no basis changes take place, and many do not
account for changes in the extreme point solutions (12:211). Under these assumptions
analytical methods have been developed to estimate the mean and the variance of the

stochastic-program:

...[Consider] the cost of minimizing C = ¢Ix [the objective function], where the
components of the vector ¢ had a joint normal distribution with means m; and

covariance matrix V. C is then also normally distributed with mean M = mTx
and variance $2 = xTVx.

If all coefficients and constants of the constraints are fixed, and if we want to
minimizce the expected value of C, then the problem is reduced to the

deterministic program of minimizing mTx. But let us assume that we want to
minimize the expected utility of C, which we define as: 1 - exp( -aC) where a is a
positive constant, which economists call a measure of the aversion to risk,

(13:23-24)

Vajda goes through a proof that reduces the problem to a "deterministic program of
minimizing aM - 50282, a function which is quadratic in x" (13:24).

The feasibility of the solution to a stochastic program is a topic of much rescarch.
Randomness in the constraint matrix or the right hand side b vector can cause the
solution to be super-optimal and infeasible. If only the objective function is stochastic,
the solution will remain feasible and only the optimal value will change (13:3).

Bard and Chatterjee introduce a perspective of the variability of a design that is
specifically concerning objective function bounds for the inexact linear programming
problem with generalized cost coefficients. They conclude that increasing the
"oblongness" of the variance of the coefficients in the objective function rather than

decreasing their volun.c provides better results when solving the stochastic linear

program (1:491). In other words, uniform variance in the coefficients of the objective




function is not necessarily desirable, but decreasing variance of one coefficient at the
expense of others may lead to improved LP solutions.

Bracken and Soland present a paper on "a statistical decision analysis of a one-
stage linear programming problem with deterministic constraints and stochastic criterion
function" (4:205). This paper presents analytical and Monte Carlo methods to find the
expected value of both perfect and sampied information, but it is not possible to solve the
analytical problem when the objective function coefficients come from a multivariate
normal distribution. In addition, this article presents a method to describe the
"...distribution of the optimal valuc of the linear programming problem with stochastic
objection function and [discusses] Montc Carlo and numerical integration procedures for
cstimating [the optimal valuc] distribution" (4:205).

A misconception cxists that there is no need to evaluate the stochastic nature of
the objective function in a linear program because the analyst can use sensitivity analysis

to conduct a proper evaluation. Davis and West address this misconception:

Post-optimal or sensitivity analysis provides the modeler with the ability to
analyze the functional behavior of the optimal solution as parameter assignments
are modificd, but these methods again provide little insight toward the probable
values that the optimal solution [of a stochastic problem] will assume. For this
reason it is often difficult to choosc a robust solution. (5:199)

Bracken and Soland observe that the optimal solution to any linear program will
always occur at an extreme point: therefore only extreme points need to be considered.
In other words, if all the extreme points can be identified, then the actual lincar
programming problem does not need to be solved, but instead a Monte Carlo procedure
can be used to evaluate the probability distribution of the simulation output at each
extreme point. The value of the extreme points can then be evaluated and compared to
identify the top-ranking alternatives. This article refers to an article by C. E. Clark in
which he describes a method (using a reduced set of extreme points) approximating the

characteristics of the distribution of the "...maximum value of the (reduced) lincar




programming problem admitting only the p selected alternatives." (4:212,214). "pisa

subset of the overall (assumed independent) extreme poiats.

There are several reasons for studying the reduced linear programming problem.
First of all, the number r of extreme points which comprise the set S may be so
large that the decision maker finds it undesirable to consider ail of them in his
analysis of the decision situation. He may therefore decide to limit his further
analysis to the p selected aliernatives. The smaller number of alternatives thus
available makes computation of .the EVPI [Expected value of perfect information]
and/or the EVSI [Expccted value of sampled information] much more feasible.
Second, the expected value of the maximum value of the reduced problem is a
lower bound to the corresponding quantity for the original problem, and could
therefore serve as an estimate of the expected value of the maximum value of the
original problem. We would expect the bound to be best when the p selected
alternatives are the p top-ranking alternatives (in order) with respect to the prior
distribution on ¢ [the unknown mean vector of a multivariate stochastic process).
(4:212)

Clark's procedure, as contrasted with a Monte Carlo simulation

has the advantage that the results may be obtained quickly and cheaply for
different sclcctions of the alternative extreme points and/or different parameters
in the distribution of ¢. The accuracy achieved with Clark's procedure is
somewhat limited, however, especially when the distribution of v [where v is the
objective function] is degenerate, whercas great accuracy can be achieved in
Monte Carlo simulation if a sufficiently large number of draws is used...One
difficulty is that the values obtained with Clark's procedure are dependent upon
the order in which the variables are listed. (4:214-224)

Davis and West present both a decision theory approach and a Monte Carlo

approach to solving this problem.

Decision thcory begins by predefining the alternative solutions that will be
considered. Next potential rcalizations for the decisionmaking cnvironment must
be specified with a priori assignment of the probability that each realization occur.
Using this information, the trade-offs among the alternatives are then analyzed,
and the apparent optimal solution alternative is selected. Decision theory does
generate the probability that each alternative will be the optimal solution.
However, the analysis is limited by the number of predefined alternative solutions
selected and the accuracy in the specification of the a priori probabilities for the
potential states of the systems... generation of probabilistic bounds upon the
optimum solution requires considerable computational effort with the
mathematical programming approach whereas decision-theory approaches
provide this information directly...Although these analyses are still typically
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limited to the consideration of a finite sct of alternatives, the methods of response
surface methodology coupled with classical optimization approaches have been
used to optimally assign key parameter values within simulated systems operating
under the selected alternative. (5:199-200)

Davis and West, instead of defining the possible solution states, use the simulated
decisionmaking scenarios from the Monte Carlo analysis and assume cach scenario has
an equal probability of occurring (5:207). The above approach belies the difficulty in
identifying the possible scenarios and their probability of occurring, The paper was
introduced as a contrast between the methods of decision-theory and Monte Carlo
simulation, but the decision analysis builds on the results from the Monte Carlo analysis.

Also, the paper presents an analysis of only a single study and not an evaluation of the

overall process (5:199-209).

2.3 Summary

Incorporating stochastic programming in thc optimization procedure for
stochastic simulations with constraints has recently been used in limited cases, but no
overall evaluation of the process has been done!. In solving problems with random

coefficients

difficulties arise from two sources. First, meaningful simulation models must be
generated from which the uncertain parameter values can be sampled. Second,
the ability to statistically analyze the results from numerous sample optimal
solutions generated during the simulation must be demonstrated. Even if both
difficulties are addressed, the task still remains of selecting the decision which
provides the best compromisc between optimality and risk. (5:209)

Morben, in solving a "rcal world" problem, demonstrates a case where using the expected
value of a stochastic objective function leads to an answer which falls outside a 95%

cor “idence bound found through a Monte Carlo analysis (10:27). This case clearly

! This research will analyize the overall process and look into ways to incorporate experimental design in
the stochastic programining subportion.
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demonstrates there is a risk in some Situations if only the expected value is used, and it
makes the case for incorporating some form of stochastic analysis. Experimental design,
constrained simulation optimization, and stochastic programming arc all well developed
fields while the need to incorporate aspects of all three seems to exist little research has

been done to achieve this goal.
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3 Phase I: Impact of Estimation Errors Methodology

3.1 Introduction

Phase I investigated-how errors in estimating the tesponse surface affect the
estimatc of the optimal solution of the maximizing linear program. Figure 1. shows the

basic approach

—= .
— > Simulation Model |t Y
_.%
% Design of
Response Surface j<&@----- Experiments #1
Methodology
% ___________ Validate Model
Y = F{X) + error
% Design of
~ R B Experiments #2
MAXF(X) =Z
-OR-
st. AX =b
? ...... Monte Carlo
Estimate:
* *
E(Z),VAR(Z), BIAS

Figure 1. Analysis Flow

3.2 Starting Hypothesis

This research phase considers the simulation a black box that consists of a "Truth

Model" plus noisc.
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Fesponse

Decision Variable
——% Truth Model + £ ———%
Settings

Figure 2. Black Box Simulation Model
The simulation response serves as input to the estimate of a response surface (the
objective function of a linear program). The Functions:
Z*=LP(C, A, b) (1)
27 =1LP(C, A, b) )
define the optimal value Z* (or estimated optimal valuc 2*) of a linear program
employing the reviscd simplex method. Where
C=cTx true (or known) objective function
€ =¢Tx estimated objective function
A = constraint matrix
b = right hand side vector.
¢ = true surface coefficients underlying the metamodel
C=c+e¢ cstimated cocfficicnts of objective function (rcsponse surfacc)
Assumption: € ~ N(0,62(XTX)1)
Phase I started with the premise that Z* (the "true" optimum) is equal to the
cxpected valuc of the parameters of the linear program:
Z¥ = LPE(C, A, b)) (3)
but, it will be demonstrated that Z* is not, in general, equal to the cxpected value of the
linear program with the estimated valuc of the objective function:

Z* =LP(C, A, b) = LPE(C, A, b)) # ELP(C, A, b)) =E2*) 4)
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Further, as the standard error in the estimates of the cocfficients increases the bias in 27

and 62(2%) increases.

3.3 Testing Hypothesis

This research used a computer program to test the hypothesis in Equation 4. The
computer program uscs a Monte Carlo approach; sampling from a "Truth Model" with
noisc it generates a responsc surface which is uscd as the objective function of a linear
program. The objective function is then sampled using the variance-covariance matrix
generated from the regression of the design matrix and responsc whilc collecting

statistics at all stages (sec Figure 3).

3.4 Investigating Indicated v. True

Besides characterizing the distribution of the cstimated optimal solution, this
research investigated what solution an analyst might expect in practice versus the "true"
solution. The analyst estimates two key clements: the optimal extreme point (Pfl’*) and
thc optimal valuc given that point (Z%). Theorctically, any changes to the linear program
could change characteristics of the comparison, but this research will investigate whcether
there is a common trend to be identified.

To characterize the possible results the computer program generates an estimated
objective function (responsc surface) and solves the linear program. Both the estimated
optimal value and the estimated optimal cxtreme point are generated and compared to the
true optimal extreme point, its value, and the value of the true function at the cstimated
extreme point (later thesc valucs are sorted and plotted to give a visual representation of
the comparison). Contrasting these plots with plots of different linear programs and at

different noise levels gives insights to the problem.
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Objective Function Loop

== Solve Linear Program

y

Collect & Print Statistics on:

= Decision Variable Sets

= Extreme Points

= Overall Objective Function
= Visits to true extreme point

Figure 3. Computer Flow
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4 Results Phase |

4.1 Introduction

There is no singular "truc" answer to Phase I, but it appears the general process
can be characterized. Consistent results were found for all maximization problems
studied by cvaluating different linear programs at different noise levels and gencrating
random "Truth Models". The following results capture what can be cxpected in the
gencral case. As noisc is introduced in the cstimation of the objective function the

cstimated optimal extreme point will vary as shown in Figure 4.

A Realizations of Objective
Function as a Random Variable

Extreme Points

Feasible Region

i

Figure 4. Objective Function Noise

4.2 Bias and Variance

An additional module was added to the computer program to generate random
"truth models," constraint matrices, and right hand side vectors. The output from this

module characterized this basic approach over a variety of linear programming problems.
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Always, for the randomly generated maximization problems tested, the computer
program indicated that the value of the "True" linear program is less than or equal to the
value of the lincar program with noise :

Z* <E(LP(C, A, b)) =E(Z%) (5)

This can be graphically represented in the following figure:

— P

o>
NS>

Figure 5. Noise Impact & Bias
this figurc shows how a normally distributed estimate of the objective function € affects
the normal distribution in the estimate of the optimal value 2%,

The high bias in the estimate of thc mean was present in all linear programming
problems analyzed (and those randomly gencrated). Also, as the noisc level increased in
a given problem the bias increased in a roughly linear trend; here the bias is the mean
estimated optimum minus the true optimum.

Bias= E(Z2%)-Z* (6)
The following figures illustrate a typical case where the standard error = o(parameter

estimates). The underlying linear program, in this case, is:

Maximize 151 + 17x0+ 183+  20x4+ 10

Subject to X] + Xp + 2x3 + X4 < 12
2x1 + X7 + -X3 + X4 < 14
X1 + X9 + X3+ 2x4 < 10
X1 X2 X3 X4 2 0
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Figure 6. Bias Inflation

The bias increases as the standard error increases, and the standard deviation of 7*

follows a similar trend as shown in the Figure 7.

60 1 T T T
-
o0k f/ _
Tz -

20 ##ﬂf//“// u
0 ; -~ |1 | | |

pA 3 4 5

Standard Erxror

Figure 7. o(Z") Inflation

Combining the last two points, one can expect as o(parameter estimates) increases not

only does the bias increase, but the spread in 2¥increases.

4.3 Indicated v. Actual Solutions

The bias in the estimated value of the optimal answer only illustrates the trend
over multiple realizations, but an analyst may be interested in what he can expect in one

realization of the process. Here, let's go a step beyond the statistics in the previous

19




section dealing with bias and analyze the contrast between each 2% and the actual value
of choosing that extreme point. In the following figures
True = value of "Truth Model" given the extreme point corresponding to 2F
Indicated = 2%
The extreme point for 2% is that extreme point the linear program chooses as optimal.
The following figures are characteristic of all problems evaluated. The following points
are of interest:
1. The True solution is sorted in descending order where the first (left most)
cxtreme point represents the "true" optimal extreme point.
2. The Indicated solutions are sorted in descending order around their extreme
point.
3. All points in the plots are cqually likely in a single realization of the process
(8000 samples).
4, For a point cstimate there is no way to know if the estimate is high or low
without prior knowledge.
5. The distribution of the solution around each extreme point is normally
distributed with a bias.
6. As o increases the percent of visits to the "true" optimal extreme point
decreases.
7. As o increases there is a greater chance that the chosen extreme point will be
greatly inferior to the "true" optimal extreme point, but there is still a chance A
with be much higher than even the "true" optimal extreme point Z~,
8. The chance of selecting the solution with the chosen extreme point within 10%
using 2% occurs only about 10% of the time.
9. Extreme point changes occur where a True value step change occurs and

where the Indicated value jumps from a low value to a high value.
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Figure 8 Indicated Z" vs Actual o = 2.25

When o = 2.25 visits to the "true" optimal extreme point occur about 14% of the

time, and about 98% of the solutions are "close" to the "true" optimal extreme point.
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Figure 9 Indicated Z* vs Actual o = 3.25

When o = 3.25 selecting the "true" optimal extreme point occurs about 7% of the

time, and about 92% of the solutions are "close" to the "truc" optimal extreme point.
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Figure 10 Indicated Z* vs Actual o = 4.25
When o = 4.25 selecting the "true" optimal extreme point occurs about 6% of the
time, and about 91% of the solutions are "close" to the "true" optimal extreme point.
A single realization of the process (Or point estimate) gives little information on
how thc chosen extreme point will actually perform. Other techniques must be

investigated to put this information into practical application.
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5 Phase Il Sampling Extreme Points Methodology

5.1 Introduction

Phase I illustrated that limited information about the true solution can be obtained
from a single realization of the process. The estimated cxtreme point may lead to a
highly biased solution compared to the true extreme point. Phase Il investigated how to
obtain the true extreme point using two methods. The first method samples the generated
objcctive function (in a Monte Carlo fashion) using the V'ariance-cc;variancc matrix from
the regression analysis and catalogs the extreme points visited. The second method
samples the generated objective function via a design and catalogs the extreme points
visited. Identifying the optimal cxtreme point may be possiblc by sampling the
simulation at cach extreme point visited--this will be investigated in Phasc III. Also,

empolying a screening technique will be investigated to improve the cfficicncy of the

process.

5.2 Starting Hypothesis

As a starting hypothesis, this rescarch assumes that given an initial response
surface and its associated variance-covariancc matrix we can sample the "truc" optimal
extreme point.

Pr("true" optimal EP sampled | initial estimated EP & 62(XTX)1) = 1

as N = o
where

EP = extreme point

initial cstimated EP = extreme point identified when the objective function is

assumed to be deterministic and the LP is solved once.

N = number of objective function samples.
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62(XTX)"1 = variance-covariance matrix driving multivariate normal sampling.

5.3 Visits to true Extreme Points via Sampling

In practice, analysts usually only have one estimate of the-objective function, but
in this research the computer program can generate any number of objective functions.
Calculating a variance-covariance matrix for each response surface the program then uses
it as input to generate a multivariate normal sample. The computer program then
samples from this distribution an arbitrary number of times and tests if the computer
program samples the "true" extreme point. The computer program evaluates this process
by combining these two sampling routines in a Monte Carlo fashion (call this the brute
force approach). Of course, without knowing the "truc" cxtreme point a priori there is no
way of knowing the "true" extreme point was sampled in practice. In this research the
"true" solution is known at the outset because the computer program defines the

underlying truth model.

5.4 Visits to true Extreme Points via Design

As an alternative to the brute force approach of Monte Carlo sampling this
research investigated sampling using a design. This is investigated by applying a Box-
Behnken design (3:519) with only one sample at the zero level. The goal is to sample the
true extremc point, a design is used to try to minimize the number of samples of the
objective function of the linear program. Modifications to the Box-Behnken design were

investigated.

5.5 Screening Extreme Points

Evaluating the estimated objective function using either Monte Carlo sampling or
a design, requires solving a linear program for every sample of the objective function.

Solving multiple linear programs requires a lot of computer time, and for a large problem
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threatens to make this research impractical. If a way could be found to test each sampled
objective function to see if its optimum basis has previously been sampled then a
screening method could be applied to reduce the number of linear program solutions
required. In this research, only the objective function is stochastic and therefore only
optimality, and not feasibility, is an issue. The optimality condition, for a maximization
problem, in the general case is:
c-cBB'lASO @)

where

¢ = objective function

¢, = coefficient of the basic variables

B-1 = inversc of columns under basic variables

A = constraint matrix
The specific cquation is:

-t BlA<0 (8)

where

¢ = the coefficients of the sampled objective function

¥, = the coefficients of the sampled objective function associated with the basic

variables.

As new extreme points arc sampled their corresponding B-1 A matrix and a vector
identifying the basic variables are storcd in a set, this set is then used to screen new
objective function samples. For every new sample of the objective function the computer
program cycles through the B-1 A matrices using Equation 8 until the optimality
condition is satisfied, if the optimality condition is not satisfied it solves the lincar
program to identify a new basis. Using this technique a linear program is solved only

once for each unique extreme point sampled.
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6 Phase lI: Investigation Results

6.1 Introduction

Sampling the estimated objective function to-include the-"'true" optimal cxtreme
point in the sampled set proved an effective method. While it is not possible to identify
the "true"" optimal extreme point when sampled, it is possible to sample a set of extreme

oints which include the "true" optimal extreme point.
p p P

6.2 "True" Extreme Point:Visits w/ Monte Carlo Sampling

Monte Carlo sampling proved a effective method of sampling over a broad rangc
of problems. As is expected, the probability of sampling the "true" optimal extreme
point increases as the number of Monte Carlo samples increases. The numbers of Monte
Carlo samplcs required for a given confidence level presumably increases as the number
of decisions variables increases and as the error in the estimate increases. This research
has not investigatcd any method to determine a priori the number of samples required to
achicve a given confidence level. The following tables are typical results for problems
involving 4 decision variables. The percent "truc" optimal extreme point miss is

evaluated by replicating the process 1000 times.

Standard Error 25 1.25 2.25 3.25 425
100 Samples

% Miss "true" | .8 | 1.8 | 2.6 | 5.2 | 10.0
200 Samples

% Miss "true" | 1.0 | 1.6 | 1.9 [ 2.4 | 425
300 Samples

% Miss "true" | .8 | 1.3 | 1.5 123 | 3.7
500 Samples

% Miss "true" | 5 | .9 | 1.3 | 1.9 | 3.1

Table 1. Monte Carlo Samples
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An advantage to Monte Carlo sampling is that if the analyst has the time and resources,
and wants to be conservative, the number of Monte Carlo samples could be increased.
While Monte Carlo sampling is the Ieast efficient, if the analyst is willing to takc enough

samples, it could be the most effective in sampling the "true" optimal extreme point.
p pling P p

6.3 "True" Extreme Point Visits w/ Design Sampling

First, a modified Box-Behnken design was used to sample the objective function
of the linear program. The modification involved only one sample at the zero level. The
sampling was done by varying the estimated objective function coefficients by a percent
of the cstimated standard deviation (called standard deviation multiplier) in a method
prescribed by the design. This approach was possible, in this case, because an orthogonal
design was used to sample the original "Black Box Simulation" to estimate the response
surface, as a result there are no off-diagonal elements in the variance-covariance matrix.
A more complicated method is need if off-diagonal elements were present, but it seems
an initial orthogonal design is a reasonable approach. An example of a four-variable Box-
Bcehnken design is found in Appendix B.

Table 2 illustrates the results from a single Box-Behnken design with shown

standard deviation multipliers.

Standard Error 25 1.25 2.25 325 425
Standard Dev 1.5

% Miss "truc" | 2.0 | 3.2 | 6.7 182  [307
Standard Dev 2.0

% Miss "truc" | .9 | 1.3 | 7.0 1223|371
Standard Dev 2.5

% Miss "truc" | 2 | .8 115  [327  |41.6
Standard Dev 3.0 .
% Miss "true" | .1 [ 15 1184 389 |50.6

Table 2. Single Box-Behnken Design
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Tests using this single Box-Behnken design showed limited success. It appears this
single design is inadequate to sample the "true" extreme point.

The second modification to the standard Box-Behnken design was to doublc the
length of the design by sampling at each design point twice. For every identical pair of
design points different standard deviation multipliers were used. In cffect, a three-level
design was transformed into a-pseudo five-level design. It is not a true five-level design
because each design point has only three levels, it is really the same design run twice

with two different standard deviation multipliers. Table 3 shows results of this

technique.
Standard Error 25 1.25 2.25 3.25 4.25
Standard Dev's 1,1.5
% Miss "true" | 4.0 | 5.5 | 6.5 | 7.5 | 20.5
Standard Dev's 15,2
% Miss "truc" | .9 | 1.5 | 3.6 | 9.9 | 20.2
Standard Dev's 1.5, 2.5
% Miss "true" | 2 | .1 [2.8 103 |19.6
Standard Dev's 15,3
% Miss "truc" | 25 | 0.0 165 |91 | 20.3
Standard Dev's 1,25
% Miss "true" | 2 | .1 | 2.4 [9.9 | 17.1
Standard Dev's 1,2
% Miss "true" | .9 [1.5 | 3.6 | 8.1 | 16.0
Standard Dev's 1,3
% Miss "truc" [ 0.0 | 0.0 | 2.2 |11.0  [203

Table 3. Double Box-Behnken Type Design
The double Box-Behnken design (sampling the objcctive function 49 times)
shows promise. Results with the double Box-Behnken design are superior to sampling in

a Monte Carlo fashion 49 times.

28




Standard Error 25 1.25. 2.25 3.25 4.25
% Miss "truc" 1.2 4.0 5.8 | 123 18.6

Table 4. 49 Monte Carlo Samples

Results over a broad range of probiems indicate this design is superior, but not
dramatically, to an equivalent number of Monte Carlo samples. In general, either case
fails to givc confidence in the results.

The next modification includes adding a third Box-Behnken design to the
previous two designs and sampling it at a different standard deviation, this is a psecudo

seven-level design. In essence, this is cquivalent to sampling from three consccutive

designs.

Standard Error 25 1.25 2.25 3.25 4.25
Standard Dev's 5,15, 25

% Miss "truc"" |03 |02 | 1.4 | 5.8 | 10.6
Standard Dev's 1.0,2.6, 3.0

% Miss "true" | 0.1 1 0.2 | 0.8 | 4.8 | 115
Standard Dev's 1.0,1.75 2.5

% Miss "true” | 0.3 | 0.2 | 1.1 | 4.4 [ 9.9
Standard Dev's 5,175, 3.0

% Miss "true" | 0.1 [ 0.2 | 0.8 | 5.0 | 10.6
Standard Dev's 1.0,1.75 2.5

% Miss "truc" | 0.9 |32 | 7.4 | 155  [26.1

Table 5. Triple Box-Behnken Type Design
The triple Box-Behnken design had good results, but required more samples. In
this case, the triple Box-Behnken design (with four decision variables) was sampled 73

times. Asa comparison, the results of 73 Monte Carlo samples are presented in Table 6.

Standard Error 25 1.25 2.25 3.25 4.25
% Miss "true" 1.0 2.2 4.3 7.1 12.5

Table 6. 73 Monte Carlo Samples
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Again therc is an advantage to the design over the equivalent number of Monte
Carlo samples. The main advantagc to a Monte Carlo approach is that the number of
samples can be arbitrarily increased to achieve the confidence desired, this may be
desirable if a higher confidence in the solution in necded than is possible with this
design. To this point, cach design was an imiprovement over an cquivalent number of
Montc Carlo samples, but no design gave a high success rate at higher noise levels,

In an cffort to improve the success rates with higher levels of noisc another type
of modification to the basic Box-Bchnken design was investigated. In this case, the basic
structure at cach design point was moditicd. Instead of sampling at the design points
using a three-level approach of 1, -1, or 0, this new design was a true five-level design
where cach design point was sampled with some combination of 1, -1, .5, -.5, or 0. This
modification doubles the length of the design and at cach design point alternatively

samples form cither 1 or.5. An cxample of this new design is found in Appendix B.

Standard Error 25 1.25 2.25 3.25 4.25
Standard Dev 1.5
% Miss "truc" 5.1 [ 6.8 (103 125  |155
Standard Dev 2.0
% Miss "truc" | 1.7 | 3.1 [ 4.0 | 6.3 [ 108
Standard Dev 2.5
% Miss "truc" | 5 | 1.8 [ 2.1 |53 [ 112
Standard Dev 3.0
% Miss "truc" | 0.0 | .6 | 1.7 [ 5.7 [ 12.3

Table 7. Single 5-level Box-Behnken Type Design
The single modified 5-level Box-Behnken design has 49 design point, the same
number as the double Box-Behnken design presented in Table 3. The 5-level design has
a higher success rate in sampling the "true" optimal extreme point than either the double
Box-Behnken design, or a equivalent number of Monte Carlo samples. The 5-level Box-
Behnken design represents an improvement when sampling at higher noise levels, but the

errors could still be considered significant.
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A further modification attempts to dccrease the crrors in sampling the "true"
optimal extreme point by doubling the design and choosing a different standard deviation
multiplier for the sccond half of the design. This modification is analogous to the change
crcating the double Box-Behnken design. This design creates a pseudo ninc-level design.

The results of 1000 replications of this design are contained in Table 8.

Standard Error 25 1.25 2.25 3.25 4,25
Standard Dev 5,1.75

% Miss "truc" 1267 |40 | 6.6 | 9.2 [ 12.9
Standard Dev 1.0, 2.0

% Miss "truc" | 1.8 | 2.9 | 4.5 | 6.2 | 10.2
Standard Dev 1.5, 2.5

% Miss "truc" | 0.8 | 1.2 | 1.9 [3.2 | 6.1
Standard Dev 1.5, 3.0

% Miss "truc" | 0.2 | 0.3 | 1.0 | 2.6 | 6.8

Table 8. Double 5-level Box-Behnken Type Design
The double modified 5-lcvel Box-Behnken design gave excellent results. This design
gave the best results for methods with about 97 samples, and it is competitive with a
Monte Carlo method of 200 samples.
In the next modification another modificd 5-level design is added and sampled at
a different standard deviation. This pscudo 13-level design (four variables) has 145

design points. The results are found in Table 9 and show excellent results.

Standard Error 25 1.25 2.25 325 4.25
Standard Dev 1.0,2.0, 3.0

% Miss "true" | 0.1 | 0.3 | 0.3 | 1.9 1 3.0
Standard Dev 15,25, 35

% Miss "truc" [ 0.0 [ 0.1 | 0.1 | 1.1 [ 2.9
Standard Dey 15,275 4.0

% Miss "true" 1 0.0 1 0.0 | 0.1 | 0.5 | 1.9
Standard Dev 1.5,3.0, 4.5

% Miss "true" 1 0.0 1 0.0 [0.0 | 0.5 |22

Table 9. Triple 5-level Box-Behnken Type Design




145 samples of the triple 5-level Box-Behnken design was superior to all other designs
and even superior to 500 Monte Carlo samples. This design provides excellent sampling
in an relatively cfficient manner. The main drawback is that it requires 145 samples with
only four variables. If this full design is run its length will double with every added
variable. As a possible way to offset the time required to solve this many linear
programs this rescarch investigated a method of screening sampled objective functions to
decrease the computations required.

Another interesting consideration is the number of extreme points visited with
different sampling techniques. If one sampling method provided high accuracy, but
requircd may more extreme points to be sampled, then it might not be the best design to
cmploy. Fortunately, no design greatly incrcascd the humber of extreme points sampled.
Table 10 illustratcs the total unique cxtreme points sampled for 200 Monte Carlo samples

and two design, these results arc typical of all sampling options.

Standard Error 25 1.25 2.25 3.25 4.25
200 Monte Carlo

# unique ¢xt. points | 3 | 4 | 6 | 8 | 9
Double 5-level Box- 1.5,2.5

Behnken Type

# unique cxt. points | 2 | 3 | 5 | 8 | 8
Triple S-level Box- 1.5,2.75, 4.0

Behnken Type

# unique ext. points | 2 I 4 LS I 7 | 8

Table 10. Total Unique Extreme Points Sampled by Case

6.4 Screening Extreme Points

The main drawback to using the above approaches is the need to solve a linear
program for every sampled objective function. Screening the new objective function

samples proved an efficient technique. With this technique, a linear program is solved
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only once for each sampled extreme point. The improved efficiency will vary from
problem to problem and will also depend on the number of objective function samples,
but improvement can be measured in orders of magnitude. Applying this technique
greatly increases the practicality and efficiency of the research. Using this screening
proccdure makes a strong case for using the triple 5-level Box-Behnken design approach
with a large number of samples.

In this research the IMSL Fortran Library was used to evaluate the revised
simplex method, but it does not return a B-1 matrix, only values for the optimal value
(Z*), the primal and dual solutions of the decision variablcs. To cmploy this screcning
technique the B-1 matrix must be found. The B matrix was found by choosing the
columns under the basic variables. The values of slack variables arc not given; therefore,
when slack variables are basic the computer program uses the principle of
complementary slackness to identify the values of the corresponding columns in the B

matrix.
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7 Phase Ill: Selecting the Optimal Extreme Point

7.1 Introduction

Phase II established a method to sample extreme points with the goal of including
the "true" extreme point in the sample. Phase III's aim is to pick the "true" optimal
extreme point from the population of sampled extreme points. To do this, consider the

extreme points as settings of the input decision variables to the simulation.

7.2 Starting Hypothesis

After identifying the feasible cxtreme points, the linear program is no longer
necded, and the decision variable settings at any cxtreme point are used as input to the
simulation to estimate Z*. Once a set of decision variable settings is selected the
problem becomes sclecting the "best” option. This rescarch starts with the premise that
given a set of sampled extreme points containing the "true" optimal extreme point, it can

be identified as the optimal given enough sampling:

®; = E(EP;) asN — o )
If EP* < EP then
E(EP*) = max @; = Z* (10)

i
where
N = number of samples from simulation (i.e., simulation runs)
®; = Value of "Truth Model" at ith extreme point
EP* = "true" optimal extreme point
EP = set of sampled extreme points
EP; = ith extreme point in sample (arbitrary ordering)
Using this method it may be possible to both identify the "true' optimal settings for the

decision variables (extreme point) and an unbiased estimate for the optimal solution Z*,

34




But, this method requires many samples from the simulation and only considers the

means and not the distributions around the means.

7.3 Ranking and Selection of Decision Variable Sets

Law and Kelton present ranking and selection procedures that offers an
alternative to the brute force method presented above (8:596). The analyst may be
intcrested in three selection approaches. First, the procedure is based on seiecting the
best of the k decision variablc settings. Second, as an initial screening procedure,
selecting a subsct of size m that contains the best of the k decision variable settings.
Third, selecting the best m alternatives from the k decision variable scttings, this
approach would offer greater flexibility for the decision maker by providing more
options.

7.3.1 Selecting the Best of k Systems

Previously, 2 represented the estimated optimal solution from the fnear program.

Now, let the Zij's represent point estimates from the simufation for the jth replication of

the ith decision variable set and pj = E(Zj;). This approach assumes the Zjj's are

independent (8:596). Law and Kelton define a method of finding the smallest expected
response; this research focuses on the largest expected response defining pj [tobe the fth

largest of the pj's and

Mip 2 Rig 2 - 2 Wiy an

we want P(CS) 2 P* (12)

provided pj, - pjy 2 d” (13)

and the minimal CS probability is P* > 1/k (14)
where

CS = correct solution
d* > 0 defines the "indifference" specified by the analyst.

Law and Kelton present a procedure originally developed by Dudewicz and Dalal (1975)
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[(Involving] "two-stage" sampling from cach of the k systems. In the first stage
we make a fixed number of replications of each system, then use the resulting
variance estimates to determine how many more replications from each system
are necessary in a second stage of sampling in order to reach a decision. It must
be assumed that the [Zij's] arc normally distributed, but (importantly) we need not

assume that the values of o% = Var(Zij) are known; nor do we have to assume that

2 . . . . .
the o, are the same for different i's. (Assuming known or equal variances is very

unrealistic when simulating real systems.) The procedure's performance should be
robust to departures from the normality assumption, especially if the [Zij's] are

averages. (8:596)

Law and Kclton definc the first-stagc sampling with nq = 2 replications of each k

decision variable sets and dcfine:

II()
2 Zj
- =1
Zl(l)("()) = 0 (15)
TIO
J=1
2
Sl(ﬂO) = nO -1 (16)
fori=1,2,...,k Nistotal samplc size nceded for system i
2.2
( [ 0y SiCno) T
Nj= max3ng+ 1, 3 | b (17)

L @Oy

where [x ]is the smallest integer greater than or equal to the real number x, and hy

(which depends on k, P¥, and ng) is a constant that can be obtained from Table 1
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(Appendix C). Next, make Nj - ng more replications of system i (i=1,2,. .. k) and

solve for the second-stage sample means by

Nj
S 7
J n()+1
— 2 -
Define the weights as
0 M(<Mmmﬂ\
Wi =l 1+ 1- =1 - [ (19)
1

O Sieo )]

and Wip =1-Wj,fori=12,... k. Also, definc thc weighted sample means as

7N = Wi 3P + Wig 32N, - ) (20)

and select the decision variable setting (extreme point) with the largest Zi(N i) (8:597).

Law and Kelton conclude:

The choice of P* and d* depend on the analyst's goals and the particular system
under study; specifying them might be tempered by the computing cost of

obtaining a large Nj associated with a large P* or small d*. However, choosing
n() is more troublesome, and we can only say, on the basis of our experiments and
various statements in the literature, that g be at least 20. (8: 597-598)

7.3.2 Selecting a Subset m Containing the Best of k Decision Variables

There may be cases where EP (the set of sampled extreme points)1 is large and
the above approach would require too much computer time and effort; here an initial

screening procedure could be useful.
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Now consider selecting a subset of size m containing the best from k decision

variable settings (i.e., EPj wherei=1, 2, . . ., k) where m is specified by the analyst.

This is that same situation as above except "'correct selection (CS) is defined to mean that
the subset of size m that is selected contains a system [extreme point] with mean Mg and

we want P(CS) = P provided that Hip - Mjp 2 d*; here we must have 1 Sm<k-1,P* >
m/k, and d*>0 (8:599)." Also, replace hl by h that depends not only on k, P*, and 1o,
but also on m (see Table 2 Appendix C).

Then we make Nj - n morc replications, from the second stage means

Z—i(z)(N i 0), weights Wil and Wi2, and weighted samplc means Zi(Ni),
[cxactly as before]. Finally, we define the selccted subsct to consist of the m

systems corresponding to the m smallest values of the Zi(Ni)'s. (8:599)

As m increases "considerably fewer replications' are required than when m = 1 (8:600).
1.3.2 Selecting the Best m of k Decision Variable Settings

Using the m best of k decision variable scttings approach, the analyst can provide
the best m alternatives to the decision maker giving him a broader base for a decision.

This approach is very similar to the above two approaches except the subset of size m
cquals the largest expected responses Higs Mins « oo Mj (this set is not ranked ordered).

Here P(CS) = P* provided ;. - >d*. Also, P* > m!(k-m)!/k! and replace hy by
Im  Mlm+1 2

h3 (sce Table 3 Appendix C).

7.4 Histogram Comparison

The ranking and selection procedure above presents a method of evaluating the
expected value of different decision variable settings, but choosing the "best" solution
often involves more than just identifying the largest expected value.

Histograms are plotted using all simulation samples from the best m alternatives.

The histogram can the aid the decision maker by visually representing the possible
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realizations of the process at given settings. Two important advantages are: avoiding risk
by choosing the smallest variance, and illustrating nearly equivalent alternatives and
allowing the decision maker to consider factors not captured by the model. For instance,

figure 11 illustrates possible histograms from the top three decision variable sets.

N

Figure 11 Histogram Comparison
It is not clear which is the best alternative. The top plot has the highcst mean, but a risk
averse decision maker may choosc the second option to avoid the possible down side of
the first option. In either case, a visual representation presents the decision maker with a

broader knowledge base from which to make a decision.
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8 Phase lll Investigation Results

A ranking and selection procedure was used to analyze the extreme points
sampled by the double Box-Behnken type design when the standard error equals 3.25.
The sampled extreme points are in Table 11, and include the actual Z* at each extreme

point which, of course, would not be known in practice.

Extreme Point | x1 X2 X3 x4 True Z*
1 4 0 0.666667 | 6.6666667 | 215.333
2 1 11 0 0 212
3 2 10 0 0 210
4 2 8 0 2 216
5 8 0 2 0 166
6 0 8 2 0 182
7 0 0 4.666667 | 2.666667 | 147.333
8 0 0 6 0 118

Table 11. Unique Extreme Points Sampled

Because there are only eight extreme points no screening is needed, and the
ranking and sclection of the best m out of k alternatives was used. Lets assume the best
three alternatives arc desired at a 90% confidence level (i.e., hy = 3.532) with d= 4.
Where d is the minimum separation between extreme point sample means desired, and
like the confidence level is chosen by the analyst. Knowing the true separation between
Z” it is clear d is too high, here it is chosen a little high to illustrate the robustness of the
process. There will always be a trade off between the confidence level desired, the value
of d, and the number of samples (Nj) required at each extreme point. As the confidence
level increases, or the value of d decreases, the number of samples required increases.
Table 12 correctly identifies the top three alternatives, recall that the order of the three
alternatives is not guaranteed. In this case, the decision maker would choose between

extreme points one, two and four.
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.2 . . .
S;(20) Nj Wit Wio Zi(Ny)

' 1zilo Z;2(N;-20)

1 {217.876 154.707 121 | 217.135 .186 814 217.273
2 1206.517 ) 118.576 93 212.157 247 53 210.767
3 1209.244 122.273 96 208.107 242 158 208.837
4 |214.886 254.121 199 }215.379 12 .88 215.32
5 1167.00 182.121 142 }164.912 142 858 165.209
6 |186.924 112.299 88 179.201 257 743 181.186
7 {145.86 165.889 130 | 146.701 .18 82 146.55
8 |113.123 135.033 106 |116.445 221 179 115.791

Table 12. Selecting the Three (w/ d=4) Best of the Eight Extreme Points
Table 13 shows a case where a different approach is taken. The initial estimates of the
means 211(20) show there appears to be a natural division between the first four extreme

points and the last four. Because of this natural division it might be advantageous to

choosc the best four extreme points out of the set of eight. In this case, at a 90%

confidence level hy cquals 3.571 and d is again chosen equal to four.

i 2 - : : Z.(N:
2i1(20) §;(20) Nj Zi2 (N;-20) Wil Wiz Zj(Ny)

1 1217876 154.707 124 |216.534 189 811 216.788
2 1206517 118.576 95 1212.193 24 76 210.831
3 1209.244 122.273 98 |208.554 234 766 208.716
4 1214.886 254.121 203 1215129 133 887 215.102
5 1167.00 182.121 146 |164.80 163 837 165.159
6 |186.924 112.299 90 1179.182 253 47 181.143
7 114586 165.889 134 | 146.854 178 822 146.677
8 1113.123 135.033 108 | 116.624 208 192 115.895

Table 13. Selecting the Four (w/ d=4) Best of the Eight Extreme Points
Table 13 correctly identifies to top four alternatives. Even overestimating d, this method
proved effective. Table 14 illustrates another approach, the 211(20) seem to show two

distinct groups. This can be exploited, instead of d=4 let us choose d=6, this is done with

the goal of separating the groups and then getting a feel for the rankings. This approach

might be taken if multiple replications are difficult to make (note the decrease in Nj from
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Table 13 to Table 14). Also, this approach illustrates another advantage of this

technique, using the ranking and selection procedure it is possible to identify the top m

competing alternatives. In other words, this helps identify the number of roughly

equivalent alternatives (i.c., the value for m).

i 2 ~
7:120) $;(20) Nj Z2(N:-20) Wii Wiz Zi(Ny)

1 }217.876 154.707 55 215.661 393 .607 216.531
2 1206.517 118.576 43 213.92 542 458 209.908
3 1209.244 122.273 44 1208.454 S17 .483 208.863
4 1214.886 254.121 91 215.833 263 137 215.583
5 |167.00 182.121 65 162.854 348 .652 164.296
6 | 186.924 112.299 40 179.464 537 463 183.472
7 |145.86 165.889 59 148.435 369 .631 147.484
8§ 1113.123 135.033 48 115.913 446 954 114.669

Table 14. Selecting the Four (w/ d=6) Best of the Eight Extreme Points

After choosing a ranking and selection method, the confidence level, and d then this

rescarch recommends using the data obtained through the procedure to create a

histogram. The histogram is a way to aid the decision maker. In this cxample, all the

actual variances arc cqual, but this method has its strengths when the variances arc

different. Figure 12 illustrates the histograms of the top four alternatives, the dotted

vertical lines represent Zi(N j) for each alternative. An altcrnative to presenting a

histogram of the data is the plot thec nomal probability curve defined by the estimated

mean and variance.
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Figure 12 Sample Case Histogram Comparison

At this point the choice is up to the decision maker.
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9 Conclusions and Recommendations

9.1 Introduction

This rescarch presents a superior method to the traditional approach of estimating
a responsc surface and then using it as the objective function of a lincar program. Over
multiple rcalizations the traditional approach will overestimate the true mean response,
and it is unlikely that the "truc" optimal cxtreme point will be chosen. Small variance in
the cstimates of the response surface cocfficients can lcad to large variance in the
cstimation of Z™ and a low probability of choosing the correct optimal extreme point
EP*. By using the screcning procedure this general procedure may become practical for

genceral application,

9.2 Variance Reduction

The results of this rescarch clearly lead to the conclusion that some kind of
variance reduction techniques applied to the simulation would greatly benefit the analyst.
If the analyst chooses to use the traditional method of solving this kind of problem (with
only one realization of the process) variance reduction procedures appear to be critical if
he hopes to have any confidence in the solution. If the analyst chooses to follow the
approach recommended in this research variance reduction will play a key role in
minimizing the number of extreme points sampled and aiding in the comparison between
competing extreme points.

Please refer to Law and Kelton (1991) for explanation of how to apply variance
recduction techniques. Some techniques that may be appropriate here are: multiple

replications, common random numbers, antithetic random numbers, and control variates.
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9.3 Three Step Process

As stated carlier, the purpose of this research was to investigate the traditional
approach of solving constrained optimization problems through simulation and linear
programming. Problems have been identificd and a possible solution offered. Figure 13

illustrates a standard estimation of a response surface and its variance-covariance matrix,

> Simulation

A

| Design

4

RSM

A

38 62Xx)

Figure 13 Step 1

Figure 14 illustrates a Monte Carlo or design procedure (using screening) to sample the
objective function with the goal of including the true optimal extreme point (EP¥) in the
sampled set. It appears the superior choice is to uses the screening procedure and then

sample from the objective function using a triple 5-level Box-Behnken type design.
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Figure 14 Step 2

Figure 15 illustrates how to identify the "true" optimal extreme point EP* (with a given
probability) and present the information to a decision maker in both numeric and visual

form,
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Figure 15 Step 3

9.4 Further Research Areas

This rescarch could be continued in the following arcas:
1. Investigate alternative sampling designs with the goal of decreasing the number of
design points and incrcasing the "true" optimal extreme point sampling accuracy.
2. Investigate an alternative structure to decrease the number of design points in the
triple modified 5-level Box-Behnken design.
3. Investigate a method to determine a priori the number of samples that must be taken to
achieve a given confidence level.
4. Investigate an alternative to Law and Kelton's ranking and selection procedure

presented in this research.
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Appendix A: lllustration of Three Step Process
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Box Behnken Type Designs

Appendix C
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Single Box-Behnken Design (four variables)
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1.0 05 00 00
1.0 -05 00 00
-1.0 0.5 00 00
1.0 0.5 0.0 0.0
0.0 00 -0 -05
0.0 0.0 10 -05
0.0 00 1.0 0.5
0.0 0.0 1.0 0.5
-1.0 0.0 00 -05
1.0 0.0 00 05
-1.0 0.0 00 05
1.0 0.0 0.0 0.5
00 1.0 -05 0.0
0.0 1.0 05 0.0
00 -1.0 0.5 0.0
0.0 1.0 0.5 0.0
-1.0 00 -05 0.0
10 00 05 0.0
-1.0 0.0 0.5 0.0
1.0 0.0 0.5 0.0
00 1.0 00 -05
0.0 1.0 00 -05
00 -0 00 05
0.0 1.0 0.0 0.5
5 10 00 00
05 -1.0 00 00
0.5 1.0 00 00
0.5 10 0.0 0.0
00 00 05 -10
0.0 00 05 -10
0.0 00 -05 1.0
0.0 0.0 0.5 1.0
-0.5 00 00 -10
0.5 00 00 -10
0.5 00 00 1.0
0.5 0.0 0.0 1.0
00 05 -0 00
00 05 -0 00
00 -05 10 00
0.0 0.5 1.0 0.0
05 00 -0 00
0.5 00 -1.0 00
-0.5 0.0 1.0 00
0.5 0.0 1.0 00
00 -05 00 -1.0
0.0 05 00 -10
00 -05 0.0 1.0
0.0 0.5 0.0 1.0
0.0 0.0 0.0 0.0

Box-Behnken Type Design with 5 levels (four variables)
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Appendix C: Constants for the Selection Procedures

p* ng k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
090 20 1.896 2342 2.583 2747 2870 2969 3.051 3.121 3.182
090 40 1.852 2283 2514 2669 2.758 2878 2954 3.019 3.076
095 20 2453 2872 3.101 3258 3.377 3.472 3551 3.619 3.679
095 40 2386 2.786 3.003 3.150 3.260 3.349 3.422 3.484 3.539

(8:606)

Table 15. Value for h1
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(for m =1, use Table 1)

m k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
P*=,90 no=20
2 1.137  1.601 1.860 2.039 2.174 2282 2373  2.450
3 0782 1243 1507 1.690 1.830 1.943  2.038
4 0556 1012 1276 1461 1603 1.718
5 0392 0843 1.105 1.291 1.434
6 0265 0711 0971  1.156
7 0.162 0.603  0.861
8 0.075 0512
9 N/A
P¥=,90 nro=40
2 1.114  1.570  1.825 1.999 2.131 2237 2324 2399
3 0763 1219 1479 1.660 1798  1.909  2.002
4 0541 0991 1251 1434 1575  1.688
5 0381 0824 1.083 1266 1.408
6 0257 0693 0950 1.133
7 0.156 0.587  0.841
8 0.072  0.497
9 N/A
P¥=.95 no=20
2 1.631  2.071 2321 2494 2625 2731 2819 2.894
3 1256 1.697 1952 2131 2267 2378 2.470
4 1.021  1.458 1714 1.894 2.033  2.146
5 0852 1.284 1539 1720 1.860
6 0721  1.149  1.402  1.583
7 0.615 1.038  1.290
8 0.526  0.945
9 0.449
P¥=.95 nop=40
2 1,591 2,023 2267 2435 2563 2665 2750  2.823
3 1222 1.656 1907 2.082 2217 2325 2415
4 0990 1.420 1.672 1850 1987  2.098
5 0.824 1248 1499 1678 1.816
6 0695 1.114 1363  1.541
7 0591  1.004 1.252
8 0.505 0913
9 0.430
(8:606)

Table 16. Value for ho

54




(for m =1, use Table 1)

m k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
P*=.90 no=20
2 2342 2779  3.016 3.177 3299 3396 3.477  3.546
3 2583  3.016 3251 3.411 3532 3.629 3.709
4 2.747 3.177 3.411 3571  3.691  3.787
5 2.870 3299 3532  3.691 3.811
6 2969 3396 3.629  3.709
7 3.051 3.477  3.709
8 3.121  3.546
9 3.182
P¥*=.90 no=40
2 2283 2703 2928  3.081 3.195 3285 3360 3.424
3 2514 2928  3.151 3302  3.415 3505 3.579
4 2.669  3.081 3302 3.451 3.564  3.653
5 2,785  3.195 3.415 3.564  3.675
6 2.878 3285 3.505  3.653
7 2.954 3360 3.579
8 3.019  3.424
9 3.076
P¥=95 no=20
2 2872 3282 3507 3.662 3779 3873 3952 4019
3 3101 3507 3731 3.885 4001 4.094 4.172
4 3258  3.662 3.885 4.037 4153  4.246
5 3377 3779 4001 4153 4269
6 3.472 3873  4.094  4.246
7 3551 3.952 4172
8 3.619  4.019
9 3.679
P¥=95 no=40
2 2786 3175 3386 3530 3.639 3725 3797 3.858
3 3003 3.386 3595 3738 3.845 3931  4.002
4 3150 3.530 3738 3879 3986  4.071
5 3260 3.639 3.845 3986  4.092
6 3349 3725 3931  4.071
7 3.422 3797 4.002
8 3.484  3.858
9 3.539
(8:606)

Table 17. Value for hg
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~ Appendix D: Main Computer Program Listing
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PROGRAM RSMLP

Wiritten by 1LT R. Garrison Harvey Maxrch 1, 1992

This program investigates the how the noise in the estimation of
a response surface impacts the estimation of the optimal solution
when the response surface is used as an objective function of a
linear

program.

el NeKe!

This program is a research tool, but with the elimination of
unneeded procedures could be used in practice.

This program has the following main loops:

Noise loop (NL times)
Response surface (obj. function) sampling (DRUNS times)
Sampling of the objective function of the LP to
identify the "true" optimal extreme point (RUNS times)

OO0 O0O0O00O0000

CCCCCCCCCCCCCCCLeeeeeeeeeeeeecceeceecececececececececccecceccecc
CCCCCCCCCCCC VARIABLES FOR THE LP PORTION CCCCCCCCCCCCCC

INTEGER LDA, M, NVAR, RUNS, BCDIM, EPDIM

PARAMETER (M=3,NVAR=4, LDA=M, RUNS=149,BCDIM=20,EPDIM=20)
INTEGER DP, DRUNS, TRUNS, NVARY,NINT,NL,STEP

PARAMETER (DP=16, DRUNS=1000, TRUNS=RUNS*DRUNS, NVARY=NVAR+1)
PARAMETER (NINT=20, NL=5, STEP=50)

C 111! When changing the parameters remember to change the subroutines

INTEGER IRTYPE(M), NOUT

REAL A(M,NVAR), B(M), C(NVAR),OBJTRUE(NVAR), DSOL(M)
REAL XLB(NVAR), XSOL(NVAR), XUB(NVAR), OBJ,CONSTANT
REAL XSOLT(NVAR), OPTT

EXTERNAL DLPRS, SSCAL, UMACH

CCCCCCCCCCLCCLLLCeCeeeceeeeceeeceeeeeceecccecececeececccececccce
CCCC VARIABLES FOR THE MULTIVARIATE NORMAL GENERATION CCC

INTEGER IRANK, ISEED

REAL R(RUNS,NVAR),RSIG(NVAR,NVAR)

EXTERNAL CHFAC, RNMVN, RNSET, UVSTA, RNNOA,RNNOF
EXTERNAL CORVC, WRRRN, RCOV,HHSTP, OWFRQ, PROBP,WROPT
EXTERNAL SCOLR,LINRG,MRRRR

CCCCCCCCLCCCCCCCCeeceeeeeeeeecceceeeeeeeeecceecceecececcececc
CCCCC VARIABLES FOR THE MONTE CARLO SIMULATION CCCCCCCCC

INTEGER RUN,EP,BC,EPCNT(EPDIM), BCCNT(BCDIM), SCREEN

INTEGER J,K,N,I, SIM, FailSamp, SEP,S,SS,SSS, SET
INTEGER CONSTRAINTS(3)
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INTEGER XBASIC(NL,BCDIM,M)

REAL NOISEMULT(NL), OPTIMUM(TRUNS,1)

REAL BASIS(BCDIM,NVAR), OPTBASIS(BCDIM,TRUNS)

REAL EXTPT(EPDIM, NVAR), OPTEP(EPDIM,TRUNS)

REAL TESTU, TESTL, TOL, TEMP, AVE, MIN, MAX, S2

REAL OPTDR(DRUNS)

REAL DESIGN(DP,NVAR+1),Y(DP,1),BHAT(NVARY, 1), VARCOV(NVAR, NVAR)
REAL SEXTPT(EPDIM,NVAR), box(STEP,NVAR), SDEV(3)

REAL BA_SET(NL,BCDIM,M, NVAR),BA(M, NVAR) , CBA (NVAR)

REAL CB(M), BMAT(M,M),B_TEST(M)

COMMON OPTBASIS, OPTEP,BCCNT, BASIS, EPCNT, EXTPT, XSOL,0BJ
CCCCCLCCCCCeeeeeeeecceeececeeeecceeeceececceeccecceececccecce
cceeceeceeeeccece pefinitions CCCCcceceeceecceccececececce

CALL UMACH (2, NOUT)
DATA XLB/NVAR*0.0/
DATA XUB/NVAR*-1.0E30/
DATA A/ 1., 2., -1.,

+ 3*%1.,
+ 2., -1., 1.,
+1.,1.,2./

DATA B/12., 14., 10./
DATA OBJTRUE/15.,17.,18.,20./

CONSTANT = 10.0
DATA IRTYPE/1, 1, 1/

C DEFINES THE TYPE OF CONSTRAINTS
DATA CONSTRAINTS /3, 0, 0/

C SAMPLING = 1 <> MONTE CARLO =2 <> DESIGN
SAMPLANG = 2

C Define standard deviation multipliers
SDEV(1l) = 1.5
SDEV(2) = 2.75
SDEV(3) = 4.0

C SCREEN =1 <> YES, SCREENING, =0 <> NO SCREENING

SCREEN = 1

NOISEMULT(1l) = 1.0
NOISEMULT(2) = 5.0
NOISEMULT(3) = 9.0
NOISEMULT(4) = 13.0

NOISEMULT(5) = 17.0
TOL = 0.00001

CCCCCCC FULL FACTORIAL WITH 4 VARIABLES CCCCCCCCCCCCCCCC
DATA DESIGN/16%*1.,

+-1.,1.,-1.,1.,~1.,2.,-1.,1.,-1.,1.,-1.,3.,-1.,1.,-1.,1.,

+-.,-1.,1.,2.,-2.,-1.,1.,2.,-1.,-1.,2.,1.,-1,,-1.,1.,1.,
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+ 4%-1.,4%1.,4%-1.,4%1.,
+ 8%-1.,8%1./

HALF FACTORIAL WITH 4 VARIABLES BLOCKING I=1234 CCC

DATA DESIGN/8%*1,

-3.,1.,1.,-1.,1.,-1.,-1.,1.,
-1.,1.,-1.,1.,-1.,1.,-1.,1.,
-1.,-1.,1.,1.,-1.,-1.,1.,1.,
-1.,-1.,-1.,-1.,1.,1.,1.,1./

FULL FACTORIAL WITH 5 VARIABLES CCCCCCCCCCCCCCCC

DATA DESIGN/32*1.,
-1.,%.,-1.,1.,-1.,1.,-1.,1.,-1.,1.,-1
-1.,%.,-1.,2.,-1.,1.,-1.,%.,-1.,1.,-1
-1.,-1.,1.,%.,-1.,-2.,%1.,%.,-1.,-1.,1
-1.,-1.,1.,%.,-1.,-1.,1.,1.,-1.,-1.,1
4%-1,,4%1,,4%-1,,4%1,,4%-1.,4%1,,4%-1
8*-1.,8%1,,8%-1.,8*%1.,

16%-1.,16%1./

.,1-/-1.,1.
G Llo.-10,1.
R

L 4%L,

L.
PR
L.
gl L.

FULL FACTORIAL WITH 6 VARIABLES CCCCCCCCCCCCCCCC

DATA DESIGN/64*1.,

=1.,1.,-1.,%.,-2,,0.,-2.,2.,-2.,1.,-1
-1.,1.,-2.,1.,-1.,%.,-2.,%.,-1.,1.,-1
-i.,1.,-1.,1.,-1.,%.,-1.,1.,-1.,1.,-1
-1.,1.,-1,%.,-%.,%.,-1.,1.,-1.,1.,~1

-1.,-%.,2.,%.,-1.,-2.,3.,1.,-2.,-1.,1
-1.,-1.,2.,1.,-1.,-1.,1.,1.,-1.,-1.,1
-.,-1.,¥.,%.,-%.,-1.,1.,1.,-1.,-1.,1
-1.,-x.,%.,%.,-1.,-1.,1.,1.,-1.,-1.,1

4*-1.,4%1.,4%-1.,4*%1.,4%-1.,4%],,4%-1
4*%-1.,4%1.,4%-1,,4%1.,4%-1.,4%1,,4%-1
8%-1.,8*1,,8*-1,,8%1.,8x-1,,8%1,,8%-1
16*-1.,26%1.,16%-1.,16*%1.,
32*%-1.,32%1./

MODIFIED five level BOX-BENKIN DESIGN
DATA BOX/-1.,1.,-1.,1., 4%0.0,
-1.,1.,-1.,1., 4%¥0.0, -1.,1.,-1.,1.,
-.5,.5,-.5,.5, 4%0.0,

-.%,.5,-.5,.5, 4%¥0.0, ~-.5,.5,-.5,.5,

-.5,-.5,.5,.5,8%¥0.0,-1.,1.,-1.,1.,4%0
-1.,2.,-1.,1.,0.0,

-.,-1.,1.,1.,8%0.0,-.5,.5,-.5,.5,4*%0.

-.5,.5,-.5,.5,0.0,

4%*0.0,-1.,1.,-1.,1.,4%0.0,-.5,-.5,.5,
-.5,-.5,.5,.5,5%0.0,

P R NP
NP R NP I
1o,
ol 1,1

1.7, -1
1,71, -1

A R A
-,l-,-l-,-l.

4%,
4%,
., 8%Y,,

FOR 4 VARS
5%0.0,
5%0.0,

.0,

0,

.5,

4*0.0,-.5,.5,-.5,.5,4%0.0,-1.,-1.,1.,1_,

-1-,'1-/1.11-’5*0.0/
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4%0.0,-.5,-.5,.5,.5,-.5,-.5,.5,.5,8%0.0,
-.5,-.5,.5,.5,0.0,
4%0.0,-1.,-1.,1.,1.,-1.,-1.,1.,1.,8%0.0,
-1.,-1.,1.,1.,0.0/

MODIFIED three level BOX-BENKIN DESIGN FOR 5 VARS
DATA BOX/-1.,1.,-1.,1., 0.0%8,-1.,1.,-1.,%i., 0.0%12,
+ -1.,1.,-1.,1., 0.0%4,-1.,1.,-1.,1., 0.0%8,

+ 4 o+

+ +

-1.,-1.,1.,1.
L., 1.

,0.0%4,-1.,1.,-1.,1.,0.0%12,
-1.,%.,- 0.

/1.,0.0%22,~-1.,1.,-1.,1.,0.0%4,

0.0*4,-1.,1.,-21.,1.,0.0%4,-2.,-1.,1.,1.,0.0%8,
-1.,-1.,1.,2.,0.0%4,~-1.,1.,-1.,1.,0.0%12,

b o

4+

0.0*4,-1.,-1.,1.,1.,0.0%8,-1.,-1.,1.,1.,0.0%8,
-1.,-1.,2.,1.,0.0%8,-4.,-1.,2.,1.,0.0%*4,

<

+

0.0*8,-1.,-1.,1.,1.,0.0%4,-1.,-1.,1.,1.,0.0%12,
-i.,-%.,1.,2.,-2.,-1.,1.,1.,0.0%8/

QOO0 O0O0O000000000n
E

+

ccececeeecce SOLVE LP FOR TRUE ANSWER CCCCCCCCCCCCCCCcCe

DO 2 K = 1, NVAR
C(K) = OBJTRUE(K)
2 CONTINUE

C TO MAXIMIZE, C MUST BE MULTIPLIED BY -1
CALL SSCAL (NVAR, -1.0E0, C, 1)

C SET BOUNDS ON X VARIABLES
do 3 i = 1,nvar

xlb(i) = 0.0
xub(i) =-1.0E30
3 continue

CALL DLPRS (M,NVAR,A;M,B,B,C, IRTYPE, XLB, XUB,
+ OPTT, XSOLT, DSOL)

C AFTER RUN DSOL MUST BE MULTIPLIED BY -1 TO GET TRUE MAX
CALL SSCAL (M, -1.0E0, DSOL, 1)

C ADDING THE CONSTANT TERM
OPTT = -OPTT + CONSTANT

CCCCCCCCCCCCCCCCCC  END OF TRUE ANSWER FOR LP  CCCCCCCCCCCCCCC
CCCCCC  INITIALIZE SEED OF RANDOM NUM GENERATOR CCCCCCCCCCCCC
ISEED= 1735927
CALL RNSET (ISEED)

OPEN (UNIT = 20, FILE= 'final.out', STATUS ='NEW')

CCCCCCCCeeeeeceeeeeceecceeceecceeceeececeeccecceeceecececcceeececcc
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CCCCCCCCCCCCCCCC Monte Carlo Simulation CCCCCCCCCCCCCCCCCCCC
CCCCCCLLCeeeeeeeeeecceeceeeeceeeeceeceeeceeceececceececeecceccec

CCCCCCCCCCCCCCCCCCCC  NOISE LOOP CCCCCLCceeeeececeeecceeecceccee

DO 900 N = 1,NL
write(*,*) 'Noise level ',N
FailSamp = 0
EP = 1
BC = 1
DO 4 K = 1,EPDIM
EPCNT(K) = 0
4 CONTINUE

DO 6 K = 1,BCDIM
BCCNT(K) = 0
6 CONTINUE
CCCCCCCCCCCCCCCCCC OBJECTIVE FUNCTION GENERATION LOOP CCCCCCCCCC
DO 500 SIM=1,DRUNS
DO 20 J=1,DP
Y(J3,1) = 0.0
DO 10 K=2,NVAR+1
Y(J,1l)= Y(J,1)+DRESIGN(J,K)*OBJTRUE(K-1)
10 CONTINUE

Y(J,1l)=Y(J,1)+NOISEMULT (N) *RNNOF ( ) +CONSTANT
20 CONTINUE
CALL REGRESSION (DESIGN,Y,BHAT,VARCOV)
CCCCCCCCCCCCCC SINGLE SAMPLE WITH NO NOISE CCCCCCCCccccccceccecce
DO 80 K = 1, NVAR
C(K) = BHAT(K+1,1)

80 CONTINUE

C TO MAXIMIZE, C MUST BE MULTIPLIED BY -1
CALL SSCAL (NVAR, -1.0E0, C, 1)

C Solve LP
CALL DLPRS (M,NVAR,A,M,B,B,C, IRTYPE, XLB, XUB,
+ OBJ, XSOL, DSOL)

C AFTER RUN DSOL MUST BE MULTIPLIED BY -1 TO GET TRUE MAX
CALL SSCAL (M, -1.0E0, DSOL, 1)

C ADDING THE CONSTANT TERM
OBJ = -OBJ + Bhat(1,1)

CCCCCCCCCCCC END SINGLE SAMPLE WITH NO NOISE CCCCCCCCCCCCCCCCCCC
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C OBTAIN THE CHOLESKY FACTORIZATION (GEN OF MULTIVARIATE DIST)
CALL CHFAC (NVAR,VARCOV,NVAR,0.00001,IRANK,RSIG,NVAR)

CALL RNMVN (RUNS, NVAR, RSIG, NVAR, R, RUNS)

C RNMVN (NR, K, RSIG, LDRSIG, R, LDR)

C NR - # RANDOM MULTIVARIATE NORMAL VECTORS TO GENERATE (INPUT)

C K - (EQ NVAR) LENGTH OF THE MULTIVARIATE NORMAL VECTOR (INPUT)

C RSIG - UPPER TRIANG MATRIX, K BY K, CONTAINING THE CHOLESKY FACTOR
FOR THE

C VARIANCE-COVARIANCE MATRIX (INPUT)

C LDRSIG -(RUNS) LEADING DIM OF RSIG EXACTLY AS SPECIFIED IN THE
CALLING

C PROGRAM

C  (INPUT)

C R - NR BY K MATRIX CONTAINING THE RANDOM VECTOR IN ITS ROWS

C LDR (RUNS) - LEADING DIM OF R EXACTLY AS SPECIFIED IN THE DIMENSION
C STATEMENT OF THE CALLING PROGRAM (INPUT)

CCCCCCCCCCCCCCCC  OBJECTIVE FUNCTION SAMPLING LOOP CCCCCCCCCCC

OPTDR(SIM)=0.0

SEP = 1

SSS =0

SET = 0

DO 390 RUN = 1, RUNS

DO 100 K = 1, NVAR

IF (SAMPLING.EQ.1) THEN

C(K) = BHAT(K+1,1) + R(RUN,K)

ELSE

SS = RUN - SSS*STEP

S = 88§ +1

SSS=INT(RUN/STEP)
C(K)=BHAT(K+1,1)+

+ BOX(SS,K)*SDEV(S) *SQRT(VARCOV (K, K))

ENDIF
100 CONTINUE

IF (SCREEN.EQ.1l) GOTO 120

C TO MAXIMIZE, C MUST BE MULTIPLIED BY -1
CALL SSCAL (NVAR, -1.0E0, C, 1)

C Solve LP
CALL DLPRS (M,NVAR,A,M,B,B,C, IRTYPE,XLB, XUB,
+ OBJ, XSOL, DSOL)

C AFTER RUN DSOL MUST BE MULTIPLIED BY -1 TO GET TRUE MAX
CALL SSCAL (M, -1.0E0, DSOL, 1)

C ADDING THE CONSTANT TERM
OBJ = -OBJ + Bhat(1,1)
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C DLPRS (M, NVAR, A, LDA, BL, BU, C, IRTYPE, XLB, XUB, OBJ, XSOL,
DSOL)

C M - # OF CONSTRAINTS (INPUT)

C NVAR - ¥ OF VARIABLES (INPUT)

C A - MATRIX OF DIM m BY NVAR CONTAINING THE COEFFICIENTS OF THE M
CONST.

C (INPUT)

C LDA - LEADING DIM OF A EXACTLY AS SPECIFIED IN THE DIM STATEMENT
(INPUT)

C BL, BU - UPPER & LOWER BOUNDS VECTOR ENGTH M (INPUT)

C C - VECTOR LENGTH NVAR = COEFF. OF OBJ FUNCT (INPUT)

C IRTYPE - VECTOR LENGTH M = TYPE OF CONSTRAINTS EXCLUSIVE OF SIMPLE
BOUNDS

C  WHERE IRTYPE(I)= 0,1,2,3 INDICATES .EQ., .LE., .GE., AND RANGE
CONSTRAINTS

C  RESPECTIVILY

C  XLB,XUB - VECTORS LENGTH NVAR LOWER & UPPER BOUNDS OF VARIABLES
Cc IF NO BOUNDS THEN SET XLB = 1.0E30, OR XUB = -1.0E30

Cc DEPENDING WHICH IS UNBND

C OBJ - VALUE OF OBJECTIVE FUNCTION (OUTPUT)

C  XSOL - VECTOR LENGTH NVAR = PRIMAL SLOUTION (OUPUT)

C DSOL - VECTOR LENGTH M = DUAL SOLUTION (OUTPUT)

GOTO 155
C selection procedure to follow

120 IF (RUN.GT.1l) THEN
DO 135 J= 1,SET

C DEFINE BASIC COEFFICIENTS
DO 121 I=1,M
TEMP = XBASIC(N,J,I)
IF (TEMP.EQ.0) THEN
CB(I) = 0.0
ELSE
CB(I) = C(XBASIC(N,J,I))
ENDIF
121 CONTINUE

C CALCULATE Cb*Binv*A VECTOR GIVEN BA = Binv*a
DO 124 K= 1, NVAR
CBA(K) = 0.0
DO 122 I = 1, M

CBA(K)=CBA(K)+CB(I)*BA_SET(N,J,I,K)

122 CONTINUE
124 CONTINUE

C OPTIMALITY TEST - BRANCH IF NOT OPTIMAL

DO 130 I= 1,NVAR
IF(C(I)-CBA(I).GT.tol) GOTC 134

63




130 CONTINUE

C BASIS ALREADY SAMPLED - OPTIMAL CONDITIONS MET, DON'T SAMPLE
C Branch and sample objective function agian
GOTO 390

134 temp=0
135 CONTINUE

ELSE
SET = 0
ENDIF

SET = SET +1

C TO MAXIMIZE, C MUST BE MULTIPLIED BY -1
CALL SSCAL (NVAR, -1.0E0, C, 1)

C Solve LP
CALL DLPRS (M,NVAR,A,M,B,B,C,IRTYPE,XLB, XUB,
+ OBJ, XSOL, DSOL)

C AFTER RUN DSOL MUST BE MULTIPLIED BY -1 T0 GET TRUE MAX
CALL SSCAL (M, -1.0E0, DSOL, 1)

C ADDING THE CONSTANT TERM
OBJ = -OBJ + Bhat(1,1)

COUNT = 0
DO 137 I = 1, NVAR
IF(XSOL(I).NE.0.0) THEN
COUNT = COUNT+1
XBASIC(N,SET,COUNT) = T
DO 136 J = 1, M
BMAT(J,COUNT) = A(J,I)

136 CONTINUE
ENDIF
137 CONTINUE

IF(COUNT.GT.M) WRITE (*,*) 'ERROR COUNT > M'

C

CCC FOLLWING IS EXECUTED WHEN A BASIC VARIABLE IS NOT A DECISION
VARIABLE CCC

C
IF (COUNT.LT.M) THEN
DO 142 I = COUNT+1l, M
XBASIC(N,SET,I)= 0.0
DO 140 J = 1, M
BMAT(J,I) = 0.0
140 CONTINUE
142 CONTINUE

PO 148 I= 1, M
B_TEST(I) = 0.0
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DO 146 J = 1, NVAR
B_TEST(I)=B_TEST(I)+XSOL(J)*A(I,J)
146 CONTINUE
148 CONTINUE

DO 150 I = 1, M

IF ((B_TEST(I)-B(IL).NE.0.0).AND.((DSOL(I).LE.TOL)

+ (AND.(DSOL(I).GE.-TOL))) THEN
COUNT=COUNT+1
BMAT(I,COUNT) = 1
ENDIF
150 CONTINUE

ENDIF

IF (COUNT.GT.M) WRITE (*,*) 'ERROR: TOO MANY B coln DEFINED'

C INVERTING B
CALL LINRG(M,BMAT,M, BMAT, M)

C FINDING Binv*A
CALL MRRRR(M,M,BMAT,M,M,NVAR, A, M, M, NVAR, BA, M)

cceecececee END OF FINDING B WHEN BASIC VAR IS NOT A DECISION VAR
ccCcceecececc

DO 153 J=1,M
DO 151 I= 1,NVAR
BA_SET(N,SET,J,I) = BA(J,I)
151 CONTINUE

153 CONTINUE

C DEFINE RUNNING STATISTICS
155 OPTDR(SIM) = OPTDR(SIM) + OBJ
OPTIMUM (RUN+ RUNS*(SIM-1),1) = OBJ

CCCCCCCC  DEFINE FOR PER SAMPLE TESTING CCCCCCCCCCCCCCCCCCCC
IF (RUN.EQ.1l) THEN
DO 157 K = 1, NVAR
SEXTPT(1,K) = XSOL(K)
157 CONTINUE
ENDIF

C Define first Extreme pt & Decision Set for each run

IF ((RUN.EQ.1).AND.(SIM.EQ.1)) THEN
BCCNT(1) = 1
OPTBASIS(1,1) = OBJ
OPTEP(1,1) = OBJ
EPCNT(1) = 1
DO 158 K = 1, NVAR
EXTPT(1,K) = XSOL(K)
BASIS(1,K) = XSOL(K)
158 CONTINUE
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GO TO 390
ENDIF

CCCCCCCCCCCCC TEST COMPARE EXTREME POINTS PER SAMPLE CCCCCC
J = SEP
160 IF (J.GT.0) THEN
DO 170 K = 1, NVAR
TESTL = XSOL(K) - TOL
TESTU = XSOL(K) + TOL
IF ((SEXTPT(J,K).LT.TESTL) .OR.(SEXTPT(J,K).GT.TESTU)) THEN
J= J-1
IF (J.EQ.0) THEN
GO TO 175
ELSE
GO TO 160
ENDIF
ENDIF
170 CONTINUE
GO TO 199

C DEFINE A NEW EXTREME POINT FOR THIS RUN ONLY

175 SEP = SEP +1
DO 180 K = 1,NVAR
SEXTPT(SEP,K) = XSOL(K)
180 CONTINUE
ENDIF

CCCCCCCCCCCCCC  TEST TO COMPARE EXTREME POINTS CCCCCCCCCCCC
199 J = EP
200 IF (J.GT.0) THEN
DO 250 K = 1, NVAR
TESTL = XSOL(K) - TOL
TESTU = XSOL(K) + TOL
IF ((EXTPT(J,K).LT.TESTL) .OR. (EXTPT(J,K).GT.TESTU)) THEN
J= J-1
IF (J.EQ.0) THEN
GO TO 275
ELSE
GO TO 200
ENDIF
ENDIF
250 CONTINUE
CALL ASSIGNEP(J)
J=J -1
GO TO 290

C DEFINE A NEW EXTREME POINT
275 EP = EP +1

CALL ASSIGNEP(EP)
ENDIF
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CCCCCCCC  TEST TO COMPARE DECIOSON VAR SET CHANGES CCCCCCCC

290 J = BC
300 DO 350 K = 1, NVAR
IF ((((BASIS(J,K).LE.TOL).AND. (BASIS(J,K).GE.-TOL))
+  .AND. ((XSOL(K) .GE.TOL). OR.(XSOL(K).LE.-TOL)))
.OR. ( ((BASIS(J,K).GE.TOL). OR.(BASIS(J,K).LE.-TOL)))
+  .AND. ((XSOL(K) .LE.TOL) .AND. (XSOL(K) .GE.-TOL))) THEN
GO TO 355
ENDIF

-3

350 CONTINUE
CALL ASSIGNBC (J)
GO TO 390

355 IF (J.LE.l) THEN
BC = BC+1l
CALL ASSIGNBC (BC)
ELSE
J=J -1
GO TO 300
ENDIF

390 CONTINUE

CCCCCCCC TEST IF TRUE EXTREME POINT WAS SAMPLED CCCCCCCCCCC
J = SEP
400 IF (J.GT.0) THEN
DO 470 K = 1, NVAR
TESTI, = XSOLT(K) - TOL
TESTU = XSOLT(K) + TOL
IF ((SEXTPT(J,K).LT.TESTL).OR. (SEXTPT(J,K).GT.TESTU)) THEN
J=J-1
IF (J.EQ.0) THEN
GO TO 480
ELSE
GO TO 400
ENDIF
ENDIF
470 CONTINUE
GO TO 500

C DEFINE A NEW EXTREME POINT FOR THIS RUN ONLY

480 FailSamp = FailSamp + 1
ENDIF

500 CONTINUE

CCCCCCCLCeeeeeeeeeceeececeeceecceceeeecceccceeceecceceececcc
CCCCCCCCCCCCCC  END IF FOR MONTE CARLO SIM CCCCCCCCCCCCCCCCC
CCCCCCeeeeeeceeeeeeceececceecceeeeceececceecceeeeeceecceeceecec
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CCCCCCCCCCCCCeeeeeeeceeeeeeecceeceeccccceeceeececcceeecececece
CCCCCCCCCCCC CALCULATE RESULTS AND PRINT OUTPUT CCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCLCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeece

CALL UMACH(-2,20)

IF ((XLB(1l).NE. 0.).OR.(XLB(2).NE. 0.)) THEN
WRITE(20,%) '***x%x%% WARNING WARNING ***%*k%kkk k!
WRITE (20,%*) ' LOWER BOUNDS ON X CORRUPT'

WRITE (20,%) 'XLB = ',XLB
ENDIF

WRITE (20,*) ‘NOISE MULTIPLIER (SD) FOR NORMAL NOISE: ',
+ NOISEMULT(N)

TEMP = NOISEMULT(N)*(1/real (DP))** .5

WRITE (20,%) 'STANDARD ERROR IS :',TEMP

if (screen.eq.l) WRITE(20,*) 'This is a screening run'

if (sampling.eq.2) write(20,%) ' Using & Design to sample'’
WRITE (20,*) '# Times failed to sample true extreme pt’',
+ FailSamp

write(20,*) 'Standard deviation mult set =',SDEV
IF (FailSamp.GT.0) then
TEMP = 100*REAL(FailSamp)/real (DRUNS)

WRITE (20,'(aA, F7.3)') '% failures overall: ', TEMP
ENDIF
WRITE (20,*)'Number of Objective Function Samples: ',DRUNS
WRITE (20,%*)'Number of Runs per Obj Function: ', RUNS

WRITE (20,%) 'Total Number of Points Tested: ',TRUNS
WRITE (20,*)'The True Objective Function: '
WRITE (20,*) 'const',CONSTANT, '+',OBJTRUE
WRITE (20,%) 'Sample Generated Objective Function'
WRITE (20,*) BHAT
CALL WRRRN ('Constraint Matrix', LDA,NVAR,A,LDA,0)
WRITE (20,%) '
WRITE (20,*) 'The RHS is: ', B
WRITE (20,%*) '*True Optimal Answer: ', OPTT
WRITE (20,%*) '*True optimal Extreme Point:'
WRITE (20,%*) XSOLT
CALL WRRRN ('Design Matrix',DP,NVAR+1,DESIGN,DP,0)
WRITE (20,%*) 'Sample response varaible Y:'
WRITE (20,%) Y
CALL WRRRN ('Sample Variance-Covariance Matrix',
+ NVAR,NVAR, VARCOV, NVAR, 0)
CALL WRRRN ('Sample Cholecky Factorization Matrix',
+ NVAR, NVAR, RSIG, NVAR, 1)
if (sampling.eq.2) then
CALL WRRRN ('SAMPLING DESING (BOX-BEHNKEN)',
+ step,NVAR,BOX,step,0)
endif
WRITE (20,%) ‘!
WRITE (20,%)
+otEEtirrrtrrrrr i) DECISION VARIABLES Bltttrrrrriitrenngs

WRITE (20,%*) '# OF DECISION VARIABLE SET CHANGES : ',BC
WRITE (20,%) '°
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DO 680 K = 1, BC
WRITE (20,%*) ' !
WRITE (20,*) 'Decision var set § ',K

DO 605 J = 1, NVAR
WRITE (20,'(2X,£10.4)') BASIS(K,J)
605 CONTINUE

WRITE (20,*) '# of occurances of this basis: ',BCCNT(K)
if (sampling.eq.l) then
TEMP = (100* REAL(BCCNT(K)))/TRUNS

else
TEMP = (LOO*REAL(BCCNT(K)))/DRUNS
ENDIF
WRITE (20,'(A, F7.3)') '% of overall occurance is: ', TEMP
AVE = 0.0

DO 608 J = 1, BCCNT(K)
AVE = AVE + OPTBASIS(K,J)
608 CONTINUE

AVE = AVE/REAL(BCCNT(K))

WRITE (20,'(A, F10.4)') 'AVE. OPTIMUM IS: ',AVE

WRITE (20,'(A,F10.4)')'Bias opt est (Ave Opt-True Opt): ',
+ AVE - OPTIT

S2 = 0.0

MIN = OPTBASIS(K,1)

MAX = MIN

DO 620 J = 1, BCCNT(K)
82 = S2+ (AVE - OPTBASIS(K,J))**2

IF (MAX.LT.OPTBASIS(K,J)) THEN
MAX = OPTBASIS(K,J)
ENDIF
IF (MIN.GT.OPTBASIS(K,J)) THEN
MIN = OPTBASIS (K,J)
ENDIF
620 CONTINUE

82 = S2/BCCNT(K)

WRITE (20,'(A, F13.4)') 'The population variance is: ', S2
WRITE (20,'(A, F13.4)') 'The maximum value is: ', max
WRITE (20,'(A, F13.4)') 'The minimum value is: ', min

680 CONTINUE

WRITE (20,%) "'
WRITE (20,%) '!

WRITE (20,%)
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+ofrrrrrrratrrtartrit THE EXTREME POINT !'!0iertrinnnranaggys
WRITE (20,%*) 'NUMBER OF EXT POINTS VISITED IS: ', EP
DO 770 K = 1, EP
WRITE (20,*) * !
WRITE (20,*) 'Extreme Point & ', K
DO 715 J = 1, NVAR
WRITE (20,'(2X,£10.4)"') EXTPT(K, J)
715 CONTINUE

WRITE (20,*) '§ OF EXT PT VISITS ARE: ', EPCNT(K)
if (sampling.eq.l) then
TEMP = (100* REAL(EPCNT(K)))/TRUNS
else
TEMP = (100*REAL(EPCNT(K)))/DRUNS
ENDIF

WRITE (20,'(A, F7.3)') '% OF OVERALL IS: ', TEMP
AVE = 0.0

DO 718 J = 1, EPCNT(K)
AVE = AVE + OPTEP(K,J)
718 CONTINUE

AVE = AVE/REAL(EPCNT(K))

WRITE (20,'(a, F10.4)') 'AVE. OPTIMUM IS: ',AVE

WRITE (20,'(A, F10.4)')'Bias opt est (Ave Opt-True Opt): '
+ AVE - OPTT

C CALCULATE TRUE Z* BASED ON THIS EXTREME POINT
WRITE(20,*) "'
TEMP = 0.0
DO 719 J=1,NVAR
TEMP = TEMP + OBJTRUE(J)*BASIS(K,J)
719 CONTINUE
TEMP = TEMP + CONSTANT
WRITE (20,'(A, F10.4)') '"TRUE Z* WITH TRUE C IS: ',TEMP
WRITE (20,'(A, F10.4)') 'TRUE BIAS (2* - 2 optimal): ',
+  TEMP - OPTT
WRITE (20,'(A, F10.4)')
1+ 'Difference between expected optimal and true', TEMP-AVE

C CALCULATE VARIANCE, MINIMUM & MAXIMUM

S2 =0.0
MIN = OPTEP(K, 1)
MAX = MIN

DO 741 J = 1, EPCNT(K)
§2 = S2+ (AVE - OPTEP(K,J))**2

IF (MAX.LT.QPTEP(K,J)) THEN
MAX = OPTEP(K,J)

ENDIF

IF (MIN.GT.OPTEP(K,J)) THEN
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741

770

800

820

855

MIN = OPTEP (K,J)
ENDIF

CONTINUE

S$2 = S2/EPCNT(K)

WRITE (20,' (4, F13.4)') 'The population variance is: '

VWIRITE (20,'(a, F13.4)') ‘The maximum value is: ', max

WRITE (20,'(A, F13.4)') 'The minimum value is: ', min
CONTINUE

WRITE (20,%) ‘!
WRITE (20,%) '°

WRITE (20, *)
+ TPIIEEIIIIIIIIIttitt OVERALL RESULTS 11101011000 010ttttyt
WRITE (20,%) '!

AVE = 0.0
DO 800 J = 1, TRUNS

AVE = AVE + OPTIMUM(J,1)
CONTINUE

AVE = AVE/TRUNS

WRITE (20,'(A, F10.4)') 'Overall Mean Optimum is: ',AVE

WRITE (20,'(A, F10.4)')'Overall Bias (Ave Opt-True Opt):
+ AVE - OPTT

S2 = 0.0
MIN = OPTIMUM(L,1)
MAX = MIN

DO 820 J = 1, TRUNS
S2 = S2+ (AVE - OPTIMUM(J,1))**2

IF (MAX.LT.OPTIMUM(J,1)) THEN
MAX = OPTIMUM(J, 1)

ENDIF

IF (MIN.GT.OPTIMUM(J,1)) THEN
MIN = OPTIMUM(J,1)

ENDIF

CONTINUE

$2 = S2/(TRUNS-1)

WRITE (20,'(A, F13.4)') 'The overall sample variance 1s:
WRITE (20,'(A, F13.4)') 'The overall maximum value is: '
WRITE (20,'(A, F13.4)') 'The overall minimum value is: '
WRITE (20,%) ''

WRITE (20,%)'"
WRITE(20,%)'AVE OPTIMAL PER OBJECTIVE FUNCTION'
DO 855 J = 1, DRUNS

OPTDR(J) = OPTDR(J)/RUNS
CONTINUE
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AVE = 0.0
DO 856 J = 1, DRUNS
AVE = AVE + OPTDR(J)
856 CONTINUE

AVE = AVE/DRUNS
WRITE(20,'(A, FL0.4)')'Mean of Mean Opt per obj funct: ',AVE

S2 v 0.0
MIN = OPTDR(1)
MAX = MIN

DO 857 * = 1, DRUNS
$2 = S2+ (AVE - OPTIDR(J))**2

IF (MAX.LT.OPTDR(J)) THEN
MAX = OPTDR(J)

ENDIF

IF (“IN.GT.OPTDR(J)) THEN
MIN = OPTDR(J)

ENDTF
6§57 CONTIHUE
$2 = S2/(DRUNS-1)
WRITE (20,'(A, F13.4)') 'The sample var(mean opt): ', S2
WRITE (20,'(A, F13.4)') 'The maximum value is: ', max
WRITE (20,'{A, F13.4)') 'The minimum value is: ', min

WRITE (20,%) '!
DO 660 J = 1,15
WRITE (20,%) '°
860 CONTINUE
900 CONTINUE

CLOSE (20)

END

CCCCCCCLceeceeceeeceeeeeecceeceeecceeeeeececceececcecececceceececce
CCUCCCCCCCCCCCeCecCt  END PROGRAM  CCCCCCCCCCCCcCCccececeecce
CCCCCLCreCcceeeeeceeceeceeccceeececccecececececceecceccecececccecce

SUBROUTINE ASSIGNBC (TEMP)

INTEGER TEMP, KK, NVAR, BCDIM, EPDIM,RUNS

PARAMETER (NVAR=4,BCDIM=20, EPDIM=20,RUN/ :149)

INTEGER DP, DRUNS, TRUNS, NVARY

PARAMETER (DP=16,DRUNS=1000, TRUNS=RUNS*DRUNS, NVARY=NVAR+1)

INTEGER EPCNT(EPDIM), BCCNT(BCDIM)

REAL OPTBASIS{BCDIM, TRUNS)
REAL OPIEP(EPDIM, TRUNS),BASIS(BCDIM,NVAR)
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REAL XSOL(NVAR),OBJ, EXTPT(EPDIM,NVAR)
COMMON OPTBASIS, OPTEP, BCCNT, BASIS, EPCNT, EXTPT, XSOL, OBJ

C COUNT OCCURANCES OF EACH DECISION SET CHANGE
BCCNT (TEMP) = BCCNT(TEMP) + 1

C DEFINE DECISION SET
OPTBASIS (TEMP, BCCNT (TEMP)) = OBJ
DO 1010 KK = 1, NVAR
BASIS(TEMP,KK) = XSOL(KK)
1010  CONTINUE

RETURN
END

CCCCCCCLCeeeeeeeececceeecccceceeeccecccceceeecceccecceccce
SUBROUTINE ASSIGNEP (TEMP)

INTEGER TEMP, KK, NVAR, BCDIM, EPDIM,RUNS

PARAMETER (NVAR=4,BCDIM=20, EPDIM=20,RUNS=149)

INTEGER DP, DRUNS, TRUNS, NVARY

PARAMETER (DP=16,DRUNS=1000, TRUNS=RUNS*DRUNS, NVARY=NVAR+1)

INTEGER EPCNT(EPDIM), BCCNT(BCDIM)

REAL OPTBASIS(BCDIM, TRUNS)

REAL OPTEP(EPDIM, TRUNS), BASIS (BCDIM, NVAR)

REAL XSOL(NVAR),OBJ, EXTPT(EPDIM,NVAR)

COMMON OPTBASIS, OPTEP, BCCNT, BASIS, EPCNT, EXTPT, XSOL, OBJ

C COUNT OCCURANCES OF EACH EXTREME POINT
EPCNT(TEMP) = EPCNT(TEMP) + 1

C DEFINE EXTREME POINT
OPTEP (TEMP, EPCNT(TEMP) ) = OBJ
DO 1020 KK = 1, NVAR
EXTPT(TEMP,KK) = XSOL(KK)
1620  CONTINUE

RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCC
SUBROUTINE REGRESSION(X,Y,BHAT, VARCOV)
INTEGER NVAR, NVARY,DP,KK, JJ
PARAMETER (NVAR=4,NVARY=NVAR+1,DP=16)
REAL X(DP,NVARY),Y(DP,1),BHAT(NVARY, 1), VARCOV (NVAR, NVAR)
REAL XX (NVARY,NVARY),C(NVARY, 1), INV(NVARY, NVARY)
REAL MSE, EY(DP)

I {TERNAL MXTXF, LSGRR,MXTYF,MRRRR
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C COMPUTE (X'X)
CALL MXTXF(DP,NVARY,X,DP,NVARY, XX, NVARY)

C INVERT THE MATRIX
CALL LSGRR(NVARY,NVARY,XX,NVARY,0.00001,2, INV,NVARY)

C COMPUTE X'Y
CALL MXTYF(DP,NVARY,X,DP,DP,1,Y,DP,NVARY, 1,C, NVARY)
CALL MRRRR(NVARY,NVARY, INV,NVARY, NVARY, 1,
+ C,NVARY,NVARY, 1, BHAT, NVARY)

C CALCULATE MSE
MSE = 0.0

DO 1105 KK = 1,DP
EY(KK) = 0.0
DO 1104 JJ = 1, NVARY
EY (KK)=EY (KK) +X (KK, JJ) *BHAT (JJ, 1)
1104 CONTINUE
1105  CONTINUE

DO 1107 KK= L, DP
MSE = MSE + (Y(KK,1)-EY(KK))**2
1107  CONTINUE
MSE = MSE/( DP - NVARY)

C CALCULATE VARIANCE-COVARIANCE MATRIX
DO 1110 K=2,NVARY

DO 1100 J=2,NVARY
VARCOV(J-1,K-1)=INV(J,K)*MSE
1100 CONTINUE
1110 CONTINUE

RETURN
END

CCCCCCCCCeeeececeeeceeceeeececeeceececeecececececcececceceecececececece
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Appendix E: Sample Computer Program Output
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NOISE MULTIPLIER (SD) FOR NORMAL NOISE: 1.00000
STANDARD ERROR IS : 0.250000
This is a screening run

Using a Design to sample
# Times failed to sample true extreme pt 0
Standard deviation mult set = 1.50000 2.75000
4.00000
Number of Objective Function Samples: 1000
Number of Runs per Obj Function: 149
Total Number of Points Tested: 149000
The True Objective Function:
const 10.00000+ 15.0000 17.0000 18.0000
20.0000
Sample Generated Objective Function

9.53085 15.0707 17.1053 17.7075 19.9385

Constraint Matrix

1 2 3 4
1 1 1 2 1
2 2 1 -1 1
3 -1 1 1 2
The RHS is: 12.0000 14.06000 10.00000
*True Optimal Answer: 216.000
*True optimal Extreme Point:
2.00000 8.00000 O. 2.00000
Design Matrix
1 2 3 4 5
1 1 -1 -1 -1 -1
2 1 1 -1 -1 -1
3 1 -1 1 -1 -1
4 1 1 1 -1 -1
5 1 -1 -1 1 -1
6 1 1 -1 1 -1
7 1 -1 1 1 -1
8 1 1 1 1 -1
9 1 -1 -1 -1 1
10 1 1 -1 -1 1
11 1 -1 1 -1 1
12 1 1 1 -1 1
13 1 -1 -1 1 1
14 1 1 -1 1 1
15 1 -1 1 1 1
16 1 1 1 1 1
Sample response varaible Y:
-59.8876 -78.8743 -25.9255 4.72923 -25.1038

4.60987 9.42563

37.7662 -20.6727 9.03708 12.6977 43.4840
14.8402 45.4566

50.3080 80.6046

Sample Variance-Covariance Matrix
1 2 3 4
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Sample Cholesky Factorization Matrix

3

0.0000
0.0000
0.2445

2
0.0000
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1
0.2445
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0.0000
0.2445
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41 0.0 0.5 1.0 0.0
42 -0.5 0.0 -1.0 0.0
43 0.5 0.0 -1.0 0.0
44 -0.5 0.0 1.0 0.0
45 0.5 0.0 1.0 0.0
46 0.0 -0.5 0.0 -1.0
47 0.0 0.5 0.0 -1.0
48 0.0 -0.5 0.0 1.0
49 0.0 0.5 0.0 1.0
50 0.0 0.0 0.0 0.0
prrretprrrrrrrtelt pPECISION VARIABLES Pribirrrrrnitrrneet
# OF DECISION VARIABLE SET CHANGES : 2
Decision var set 1

4.0000

0.0000

0.6667

6.6667
# of occurances of this basis: 1003

% of overall occurance is: 100.300
AVE. OPTIMUM IS: 215.0843

Bilias opt est (Ave Opt-True Opt): -0.9157
The population variance is: 3.7599
The maximum value is: 220.5652

The minimum value is: 209.3271

Decision var set # 2

2.0000

8.0000

0.0000

2.0000
#f of occurances of this basis: 1000
% of overall occurance is: 100.000
AVE., OPTIMUM IS: 215.6013

Bias opt est (Ave Opt-True Opt): -0.3987
The population variance is: 3.8427
The maximum value is: 221.0208

The minimum value is: 209.2253

PETEELITIIIILEILLE Y THE EXTREME POINT !iitsttrprttrrrrsel
NUMBER OF EXT POINTS VISITED IS: 2

Extreme Point # 1
4.0000
0.0000
0.6667
6.6667
# OF EXT PT VISITS ARE: 1003
% OF OVERALL IS: 100.300
AVE. OPTIMUM IS: 215.0843
Bias opt est (Ave Opt-True Opt): -0.9157
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TRUE Z* WITH TRUE C IS: 215.3333

TRUE BIAS (Z* - Z optimal): -0.6667

Difference between expected optimal and true 0.2490
The population variance is: 3.7599

The maximum value is: 220.5652

The minimum value is: 209.3271

Extreme Point # 2
2.0000
8.0000
0.0000
2.0000
# OF EXT PT VISITS ARE: 1000
% OF OVERALL IS: 100.000
AVE. OPTIMUM IS: 215.6013

Bias opt est (Ave Opt-True Opt): -0.3987

TRUE 2* WITH TRUE C IS: 216.0000

TRUE BIAS (2* - Z optimal): 0.0000

Difference between expected optimal and true 0.3987
The population variance 1is: 3.8427

The maximum value is: 221.0208

The minimum value is: 209.2253

trrrrrpirrrrrrry bttt OVERALL RESULTS titrtrrrrrtrirrrernttind

Overall Mean Optimum is: 2.8948

Overall Bias (Ave Opt-True Opt): -213.1052
The overall sample variance is: 614.7244
The overall maximum value is: 221.0208
The overall minimum value 1is: 0.0000

AVE OPTIMAL PER OBJECTIVE FUNCTION

Mean of Mean Opt per obj funct: 2.8948
The sample var(mean opt): 0.0068
The maximum value is: 4.,3585

The minimum value is: 2.8164
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NOISE MULTIPLIER (SD) FOR NORMAL NOISE: 5.00000
STANDARD ERROR IS : 1.25000
This is a screening run

Using & Design to sample
# Times failed to sample true extreme pt 0
Standard deviation mult set = 1.50000 2.75000
4.00000
Number of Objective Function Samples: 1000
Number of Runs per Obj Function: 149
Total Number of Points Tested: 149000
The True Objective Function:
const 10.00000+ 15.0000 17.0000 18.0000
20.0000
Sample Generated Objective Function

8.95856 15.9861 19.6851 19.5614 16.8254

Constraint Matrix

1 2 3 4
1 1 1 2 1
2 2 1 -1 1
3 -1 1 1 2
The RHS is: 12.0000 14.0000 10.00000
*True Optimal Answer: 216.000
*True optimal BExtreme Point:
2.00000 8.00000 O. 2.00000
Design Matrix
1 2 3 4 5
1 1 -1 -1 -1 -1
2 1 1 -1 -1 -1
3 1 -1 1 -1 -1
4 1 1 1 -1 -1
5 1 -1 -1 1 -1
6 1 1 -1 1 -1
7 1 -1 1 1 -1
8 1 1 1 1 -1
9 1 -1 -1 -1 1
10 1 1 -1 -1 1
11 1 -1 1 -1 1
12 1 1 1 -1 1
13 1 -1 -1 1 1
14 1 1 -1 1 1
15 1 -1 1 1 1
16 1 1 1 1 1
Sample response varaible Y:
-70.7948 -33.0653 -25.8214 10.42741 -18.5379

17.4076 13.7993

43.6501 -25.0401 1.01661 11.4050 47.0496
3.49555 39.7061

55.2738 73.3654

Sample Variance-Covariance Matrix
1 2 3 4
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Sample Cholesky Factorization Matrix
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41
42 -
43
44 -
45
46
47
48
49
50

[ T T T O O A A |

..................

Decision var set §

4.0000
0.0000
0.6667
6.6667

# of occurances of this basis:
$ of overall occurance is:
AVE. OPTIMUM IS:
Bias opt est (Ave Opt-True Opt):

OO O OO OOOOO

oo OoOoOouUuLLunnn o

1

OCQCOOCOOOOOO
Ut UIULTOOOOWn

212.5927

The population variance 1is:

The maximum value is:
The minimum value is:

Decision var set #

2.0000
10.0000
0.0000
0.0000

# of occurances of this basis:
% of overall occurance is:
AVE. OPTIMUM IS:
Bias opt est (Ave Opt-True Opt):

2

218.1246

The population variance is:

The maximum value is:
The minimum value is:

Decision var set #

2.0000
8.0000
0.0000
2.0000

# of occurances of this basis:
% of overall occurance 1is:
AVE. OPTIMUM IS:
Bias opt est (Ave Opt-True Opt):

3

217.7167

The population variance is:

The maximum value is:
The minimum value is:

DECISION VARIABLES
# OF DECISION VARIABLE SET CHANGES

1002

OCCOOORRMRRRKRR
COOQCOOOOOO

[
OFRRREREREOOOOO
[eNoNoloNoNeNoleRoNo)

[ T T O

..................

-3.4073

1000

91.0682
248.6682
180.1154

2.1246
95.3511
245.0287
192.3946

1.7166
107.4373
252.3086
185.5855




rerrrrprrrrrer ettt THE EXTREME POINT tttgtrirrrstttrsn!d

NUMBER OF EXT POINTS VISITED IS: 4

BExtreme Point # 1
4.0000
0.0000
0.6667
6.6667
# OF EXT PT VISITS AREB: 1002
$ OF OVERALL IS: 100.200
AVE. OPTIMUM IS: 212.5927

Bias opt est (Ave Opt-True Opt): -3.4073

TRUE Z* WITH TRUE C IS: 215.3333

TRUE BIAS (2* - Z optimal): -0.6667

Difference between expected optimal and true 2.7406
The population variance is: 91.0682

The maximum value is: 248.6682

The minimum value is: 180.1154

Extreme Point # 2
1.0000
11.0000
0.0000
0.0000
# OF BXT PT VISITS ARE: 287
% OF OVERALL IS: 28.700
AVE. OPTIMUM IS: 218.0409
Bias opt est (Ave Opt-True Opt): 2.0409

TRUE Z* WITH TRUE C IS: 210.0000

TRUE BIAS (2* - Z optimal): -6.0000

Dif ference between expected optimal and true -8.0409
The population variance is: 95.5884

The maximum value is: 245.0287

The minimum value is: 192.3946

Extreme Point # 3
2.0000
8.0000
0.0000
2.0000
# OF EXT PT VISITS ARE: 1000
% OF OVERALL IS: 100.000
AVE. OPTIMUM 18S: 217.7167

Bias opt est (Ave Opt-True Opt): 1.7166

TRUE Z* WITH TRUE C IS: 216.0000

TRUE BIAS (%Z* - Z optimal): 0.0000

Difference between expected optimal and true -1.7167
The population variance is: 107.4373

The maximum value is: 252.3086

The minimum value is: 185.5855
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Extreme Point # 4
2.0000
10.0000
0.0000
0.0000
# OF EXT PT VISITS ARE: 3
% OF OVERALL IS: 0.300
AVE. OPTIMUM IS: 226.1286
Bias opt est (Ave Opt-True Opt): 10.1286

TRUE %Z* WITH TRUE C IS: 10.0000
TRUE BIAS (2* - Z optimal): -206.0000
Difference between expected optimal and true -216.1286

The population variance is: 7.9169
The maximum value is: 229.8806
The minimum value is: 223.1049

PITCIYEIELIIIIIIIIY Y OVERALL RESULTS !itttrirterrrrtrarrtyny

Overall Mean Optimum is: 4.4164

Overall Bias (Ave Opt-True Opt): -211.5836
The overall sample variance 1is: 932.7665
The overall maximum value is: 252.3086
The overall minimum value is: 0.0000

AVE OPTIMAL PER OBJECTIVE FUNCTION

Mean of Mean Opt per obj funct: 3.3154
The sample var(mean opt): 0.4727
The maximum value is: 5.9063

The minimum value is: 2.5426
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NOISE MULTIPLIER (SD) FOR NORMAL NOISE: 9.00000
STANDARD ERROR IS 2.25000
This is a screening run
Using a Design to sample
# Times failed to sample true extreme pt 1
Standard deviation mult set = 1.20000 2.75000
4.00000
% failures overall: 0.100
Number of Objective Function Samples: 1000
Number of Runs per Obj Function: 149
Total Number of Points Tested: 149000
The True Objective Function:
const 10.00000+ 15.0000 17.0000 18.0000
20.0000
Sample Generated Objective Function
11.3725 17.5542 15.3801 15.6525 22.4790
Censtraint Matrix
1 2 3 4
1 1 1 2 1
2 2 1 -1 1
3 -1 1 1 2
The RHS is: 12.0000 14.0000 10.00000
*True Optimal Answer: 216.000
*True optimal Extreme Point:
2.00000 8.00000 O. 2.00000
Design Matrix
1 2 3 4 5
1 1 -1 -1 -1 -1
2 1 1 -1 -1 -1
3 1 -1 1 -1 -1
4 1 1 1 -1 -1
5 1 -1 -1 1 -1
6 1 1 -1 1 -1
7 1 -1 1 1 -1
8 1 1 1 1 -1
9 1 -1 -1 -1 1
10 1 1 -1 -1 1
11 1 -1 1 -1 1
12 1 1 1 -1 1
13 1 -1 -1 1 1
14 1 1 -1 1 1
15 1 -1 1 1 1
16 1 1 1 1 1
Sample response varaible Y:
-37.9410 -35.1582 -41.4563 20.0342 -29.4672
9.90238 2.25696
22.9770 -29.1399 17.1932 17.8181 54.3095
11.6460 60.9039
56.7295 81.2516

Sample Variance-Covariance Matrix
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Sample Cholesky Factorization Matrix
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40 0.0 -0.5 1.0 0.0
41 0.0 0.5 1.0 0.0
42 -0.5 0.0 -1.0 0.0
43 0.5 0.0 -1.0 0.0
44 -0.5 0.0 1.0 0.0
45 0.5 0.0 1.0 0.0
46 0.0 -0.5 0.0 -1.0
47 0.0 0.5 0.0 -1.0
48 0.0 -0.5 0.0 1.0
49 0.0 0.5 0.0 1.0
50 0.0 0.0 0.0 0.0
PEPIIILIIIIIt Yt DECISION VARIABLES !!ittrrrerereastyy
# OF DECISION VARIABLE SET CHANGES : 4

Decision var set § 1
4.,0000
0.0000
0.6667
6.6667
# of occurances of this basis: 1000
% of overall occurance is: 100.000
AVE. OPTIMUM IS: 210.3186
Bias opt est (Ave Opt~True Opt): -5.6814
The population variance is: 306.0520
The maximum value is: 264.7609
The minimum value is: 158.1760

Decision var set f{ 2
1.0000
11.0000
0.0000
0.0000
# of occurances of this basis: 620
% of overall occurance is: 62.000
AVE. OPTIMUM IS: 220.3541
Bias opt est (Ave Opt-True Opt): 4.3540
The population variance is: 334.3401
The maximum value is: 267.6013
The minimum value is: 169.1727

Decision var set § 3
2.0000
8.0000
0.0000
2.0000
# of occurances of this basis: 999
% of overall occurance is: 99.900
AVE. OPTIMUM IS: 220.8882
Bias opt est (Ave Opt-True Opt): 4.8881
The population variance is: 442.1299
The maximum value is: 276.3776
The minimum value is: 161.5952
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Decision var set # 4

8.0000
0.0000
2.0000
0.0000
# of occurances of this basis: 19
% of overall occurance is: 1.900
AVE. OPTIMUM IS: 208.8170
Bias opt est (Ave Opt-True Opt): -7.1830
The population variance is: 380.0007
The maximum value 1is: 260.9492
The minimum value is: 171.0470

trrirrrrtrrrrrrirll THE EXTREME POINT triirritrrrirrirtnd
NUMBER OF EXT POINTS VISITED IS: 5

Bxtreme Point # 1
4.0000
0.0000
0.6667
6.6667
# OF EXT PT VISITS ARE: 1000
% OF OVERALL IS: 100.000
AVE. OPTIMUM IS: 210.3186

Bias opt est (Ave Opt-True Opt): -5.6814

TRUE Z* WITH TRUE C IS: 215.3333

TRUE BIAS (Z* - Z optimal): -0.6667

Difference between expected optimal and true 5.0147
The population variance is: 306.0520

The maximum value is: 264.7609

The minimum value is: 158.1760

Extreme Point # 2

1.0000

11.0000

0.0000

0.0000
$# OF EXT PT VISITS ARE: 558
$ OF OVERALL IS: 55.800
AVE. OPTIMUM 1IS: 220.3984

Bias opt est (Ave Opt-True Opt): 4.3984

TRUE Z* WITH TRUE C IS: 212.0000

TRUE BIAS (2Z* - % optimal): -4.0000

Difference between expected optimal and true -8.3984
" The population variance is: 336.2216

The maximum value is: 267.6013

The minimum value is: 169.1727

Extreme Point ¢ 3
2.0000
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8.0000

0.0000

2.0000
# OF EXT PT VISITS ARE: 999
% OF OVERALL IS: 99.900
AVE. OPTIMUM IS: 220.8882

Bias opt est (Ave Opt-True Opt): 4.8881

TRUE Z* WITH TRUE C IS: 216.0000

TRUE BIAS (Z* - Z optimal): 0.0000

Difference between expected optimal and true -4.8881
The population variance is: 442 .1299

The maximum value is: 276.3776

The minimum value is: 161.5952

Extreme Point # 4

2.0000

10.0000

0.0000

0.0000
# OF EXT BT VISITS ARE: 62
% OF OVERALL IS: 6.200
AVE. OPTIMUM IS: 219.9551

Bias opt est (Ave Opt-True Opt): 3.9550

TRUE Z* WITH TRUE C IS: 166.0000

TRUE BIAS (Z* - Z optimal): -50.0000

Difference between expected optimal and true -53.9551
The population variance is: 317.2269

The maximum value is: 257.6813

The minimum value is: 174.5772

Extreme Point 5
8.0000
0.0000
2.0000
0.0000
# OF EXT PT VISITS ARE: 19
% OF OVERALL IS: 1.900
AVE. OPTIMUM IS: 208.8170
Bias opt est (Ave Opt-True Opt): -7.1830

TRUE Z* WITH TRUE C IS: 10.0000
TRUE BIAS (Z2* - Z optimal): -206.0000
Difference between expected optimal and true -198.8170

The population variance is: 380.0007
The maximum value is: 260.9492
The minimum value is: 171.0470

vrrprrrrrrprirrrlt OVERALL RESULTS Hiitrrriiiriiireirintd

Overall Mean Optimum is: 6.1288
Overall Bias (Ave Opt-True Opt): -209.8712

89




Thé overall sample variance is.: 1298.7844
The overall maximum value is: 276.3776
The overall minimum value is: 0.0000

AVE OPTIMAL PER OBJECTIVE FUNCTION

Mean of Mean Opt per obj funct: 3.8361
The sample var(mean opt): 0.8616
The maximum value is: 8.1238

The minimum value is: 2.3285

90




‘NOISE MULTIPLIER (SD) FOR NORMAL NOISE: 13.0000

STANDARD- ERROR IS : 3.25000
This is a screening run

Using a Design to sample 7
# Times failed to sample true extreme pt 5

Standard deviation mult set = 1.50000 2.75000
4.00000
% failures overall: 0.500

Number of Objective Function Swuples: 1000
Number of Runs per Obj Function: 149

Total Number of Points Tested: 149000

The True Objective Function:

const 10.00000+ 15.0000 17.0000 18.0000
20.0000

Sample Generated Objective Function

11.8447 15.9522 17.5825 18.9583 16
Constraint Matrix
1 2 3 4
1 1 1 2 1
2 2 1 -1 1
3 -1 1 1 2
The RHS is: 12.0000 14.0000 10.00000
*True Optimal Answer: 216.000
*True optimal Extreme Point:
2.00000 8.00000 O. 2.00000
Design Matrix
1 2 3 4
1 1 -1 -1 -1
2 1 1 -1 -1
3 1 -1 1 -1
4 1 1 1 -1
5 1 -1 -1 1
6 1 1 -1 1
7 1 -1 1 1
8 1 1 1 1
9 1 -1 -1 -1
10 1 1 -1 -1
11 1 -1 1 -1
12 1 1 1 -1
13 1 -1 -1 1
14 1 1 -1 1
15 1 -1 1 1
16 1 1 1 1
Sample response varaible Y:
-45.8560 -25.5360 -27.8729 16.8729 -22.
2.03671 12.6677
51.2050 -26.2992 4.34243 -8.73610 56.

25.7303 42.6163
60.4428 74.6617

Sample Variance-Covariance Matrix

91

L7721




0.000
0.000
0.000
7.179

0.000
0.000 -
7.179
0.000

0.000

7.179
0.000
0.000

7.179
0.000
0.000
0.000

= N M <

Sample Cholesky Factorization Matrix

3

2

1

OO OO
OO O~
O O Ow
OO ON
S OO
OO~
O OWw
o O N
[en o))
o~

O Q0
SN

[e)}

™~

At}

N
IO <K

4000055555555000000005555000000000000000

0000000000000000000000000000011111l1100
1 Pt [ | ' [

30000000000005—.35555550000000005555000000

0000l1110000000000000000000000000000011
[

2_:3555000000O0000000000000000000000000055

000000000000111100001111011110000000000
[}

10000000000000000000000000555_..)000055550

11110000111_11000011110000000000000000000
t 1 i ' ) ' 1

SAMPLING DESING (BOX-BEHNKEN)

N PFINO>SO0OD

14
15
16
17
18
19
21
22
23
24
25
26
27
28
29
31
32
33
34
35
37
38
39

O =i N
L B B e

92




40
41
42
43
44
45
46
47
48
49
50

QO COOOOOODO

..................

# OF DECISION VARIABLE SET CHANGES

Decision var set #

4.0000
0.0000
0.6667
6.5667

# of occurances of this basis:
% of overall occurance is:
AVE. OPTIMUM IS:
Bias opt est (Ave Opt-True Opt):

ococoocouUutLILILLIO O .

1

OO OO0 OO0 OOO0
Ut TN OO OO UTn:

208.5842

The population variance is:

The maximum value 1is:
The minimum value is:

Decision var set #

2.0000
8.0000
0.0000
2.0000

# of occurances of this basis:
% of overall occurance is:
AVE. OPTIMUM IS:
Bias opt est (Ave Opt-True Opt):

222.7262

The population variance is:

The maximum value is:
The minimum value is:

Decision var set #

1.0000
11.0000
0.0000
0.0000

# of occurances of this basis:
% of overall occurance is:
AVE. OPTIMUM IS:
Bias opt est (Ave Opt-True Opt):

3

223.1638

The population variance is:

The maximum value is:
The minimum value is:

COOCOORRRRR R
COO0O0DO0ODODO0OO0OOCO

999

995

806

-7.4158
651.1973

288.6066

137.1993

<

OCRFRROOOOOO

OO0 OO

------------------

6.7262
841.8345
310.9501
145.5584

7.1638
721.3096
308.3556
150.9656




Decision var set # 4

8.0000

0.0000

2.0000

0.0000
# of occurances of this basis: 103
% of overall occurance is: 10.300
AVE. OPTIMUM IS: 225 2866

Bias opt est (Ave Opt-True Opt): 9.2865
The population variance is: 760.8097
The maximum value is: 283.2927

The minimum value is: 151.0016

Decision var set # 5

0.0000
0.0000
4.6667
2.6667
# of occurances of this basis: 7
% of overall occurance is: 0.700
AVE. OPTIMUM IS: 168.4372
Bias opt est (Ave Opt-True Opt): -~47.5629
The population variance is: 661.1362
The maximum value is: 219.5729
The minimum value is: 139.5171

Decision var set ¢ 6

0.0000
8.0000
2.0000
0.0000
# of occurances of this basis: 5
% of overall occurance is: 0.500
AVE. OPTIMUM IS: 163.4464
Bias opt est (Ave Opt-True Opt): -52.5536
The population variance is: 165.5492
The maximum value is: 187.7662
The minimum value is: 149.7473

tprrrtriiirirriritl . THE EXTREME POINT Pritrrriritrirreeny
NUMBER OF EXT POINTS VISITED IS: 7

Extreme Point # 1
4.0000
0.0000
0.6667
6.6667
# OF EXT PT VISITS ARE: 999
% OF OVERALL IS: 99.900
AVE. OPTIMUM IS: 208.5842
Bias opt est (Ave Opt-True Opt): -7.4158
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TRUE Z* WITH TRUE C IS: 215.3333

TRUE BIAS (Z2* - Z optimal): -0.6667

Difference betweeh expected optimal and true 6.7491
The population variance is: 651.1973

The maximum value is: 288.6066

The minimum value is: 137.1993

Extreme Point # 2
2.0000
8..0000
0.0000
2.0000
# OF EXT PT VISITS ARE: 995
% OF OVERALL IS: 99.500
AVE. OPTIMUM IS: 222.7262

Bias opt est (Ave Opt-True Opt): 6.7262

TRUE Z* WITH TRUE C IS: 216.0000

TRUE BIAS (Z* - Z optimal): 0.0000

Difference between expected optimal and true -6.7262
The population variance is: 841.8345

The maximum value is: 310.9501

The minimum value is: 145.5584

Extreme Point # 3

1.0000

11.0000

0.0000

0.0000
# OF EXT PT VISITS ARE: 661
$ OF OVERALL IS: 66.100
AVE. OPTIMUM IS: 221.9296

Bias opt est (Ave Opt-True Opt): 5.9295

TRUE 72* WITH TRUE C IS: 212.0000

TRUE BIAS (2%2* - Z optimal): -4.0000

Difference between expected optimal and true -9.9296
The population variance is: 700.3993

The maximum value is: 297.5756

The minimum value is: 153.1106

BExtreme Point # 4

2.0000

10.0000

0.0000

0.0000
# OF EXT PT VISITS ARE: 145
% OF OVERALL IS: 14.500
AVE. OPTIMUM IS: 228.7902
Bias opt est (Ave Opt-True Opt): 12.7901

TRUE Z* WITH TRUE C IS: 166.0000

TRUE BIAS (Z* - Z optimal): -50.0000
Difference between expected optimal and true -62.7902
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The population variance 1is: 778.0309
The maximum value is: 308.3556
The minimum value is: 150.9656

Extreme Point # 5
8.0000
0.0000
2.0000
0.0000
# OF EXT PT VISITS ARE: 103
$ OF OVERALL IS: 10.300
AVE. OPTIMUM IS: 225.2866

Bias opt est (Ave Opt-True Opt): 9.2865

TRUE 2* WITH TRUE C IS: 147.3333

TRUE BIAS (Z* - 2 optimal): -68.6667

Difference between expected optimal and true -77.9532
The population variance is: 760.8097

The maximum value is: 283.2927

The minimum value is: 151.0016

Extreme Point # 6

0.0000

0.0000

4.6667

2.6667
# OF EXT PT VISITS ARE: 7
% OF OVERALL IS: 0.700
AVE. OPTIMUM IS: 168.4372

Bias opt est (Ave Opt-True Opt): -47.5629

TRUE Z* WITH TRUE C IS: 182.0000

TRUE BIAS (Z2* - Z optimal): -34.0000

Difference between expected optimal and true 13.5628
The population variance is: 661.1362

The maximum value is: 219.5729

The minimum value is: 139.5171

Extreme Point # 7
0.0000
8.0000
2.0000
0.0000
# OF EXT PT VISITS ARE: 5
% OF OVERALL IS: 0.500
AVE. OPTIMUM IS: 163.4464
Bias opt est (Ave Opt-True Opt): -52.5536

TRUOE Z* WITH TRUE C IS: 10.0000
TRUE BIAS (2* - Z optimal): -206.0000
Difference between expected optimal and true -153.4464

The population variance is: 165.5492
The maximum value is: 187.7662
The minimum value is: 149.7473
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PEUIITITIIIILILL Ll OVERALL RESULTS !!ti1tatiatearateetteny

......................

Overall Mean Optimum is: 7.9645

Overall Bias (Ave Opt-True Opt): -208.0355
The overall sample variance is: 1695.8068
The overall maximum wvalue is: 310.9501
The overall minimum value is: 0.0000

AVE OPTIMAL PER OBJECTIVE FUNCTION

Mean of Mean Opt per obj funct: 4.2621
The sample var(mean opt): 1.5189
The maximum value 1is: 9.1224

The minimum value is: 2.0629
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NOISE MULTIPLIER (SD) FOR NORMAL NOISE: 17.0000
STANDARD ERROR 1S : 4,25000
This 1s a screening run
Using a Design to sample
# Times failed to sample true extreme pt 19

Standard deviation mult set = 1.50000 2.75000
4,00000
% failures overall: 1.900

Number of Objective Function Samples: 1000
Number of Runs per Obj Function: 149
Total Number of Points Tested: 149000
The True Objective Function:
const  10.00000+ 15.0000 17.0000 18.0000
20.0000
Sample Generated Objective Function
8.30373 10.6681 21.0220 19.5529 19.5255

Constraint Matrix

1 2 3 4
1 1 1 2 1
2 2 1 -1 1
3 -1 1 1 2
The RHS is: 12.0000 14.0000 10.00000
*True Optimal Answer: 216.000
*True optimal Extreme Point:
2.00000 8.00000 O. 2.00000
Design Matrix
1 2 3 4 5
1 1 -1 -1 -1 -1
2 1 1 -1 -1 -1
3 1 -1 1 -1 -1
4 1 1 1 -1 -1
5 1 -1 -1 1 -1
6 1 1 -1 1 -1
7 1 -1 1 1 -1
8 1 1 1 1 -1
9 1 -1 -1 -1 1
10 1 1 -1 -1 1
11 1 -1 1 -1 1
12 1 1 1 -1 1
13 1 -1 -1 1 1
14 1 1 -1 1 1
15 1 -1 1 1 1
16 1 1 1 1 1
Sample response varaible Y:
-54.3485 -48.7402 -26.4912 16.6902 -35.1069

4.32857 2.29300

51.6007 -26.1163 -5.40654 16.1785 38.2412
32.9653 30.6787

71.7110 64.3823

Sample Variance-Covariance Matrix
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40 0.0 -0.5 1.0 0.0
41 0.0 0.5 1.0 0.0
42 -0.5 0.0 -1.0 0.0
43 0.5 0.0 -1.0 0.0
44 -0.5 0.0 1.0 0.0
45 0.5 0.0 1.0 0.0
46 0.0 -0.5 0.0 -1.0
47 0.0 0.5 0.0 -1.0
48 0.0 -0.5 0.0 1.0
49 0.0 0.5 0.0 1.0
50 0.0 0.0 0.0 0.0
trrbrrirrrrrirtlrt DECISION VARIABLES 'tittrrrriptryrtyy
# OF DECISION VARIABLE SET CHANGES : 7

Decision var set # 1

4.0000

0.0000

0.6667

6.6667
# of occurances of this basis: 1001
% of overall occurance is: 100.100
AVE. OPTIMUM IS: 207 .5924

Bias opt est (Ave Opt-True Opt): -8.4077
The population variance is: 973.1924
The maximum value is: 304.9121

The minimum value is: 103.5766

Decision var set 2
1.0000
11.0000
0.0000
0.0000
# of occurances of this basis: 912
% of overall occurance is: 91.200
AVE. OPTIMUM 1IS: 225.7134

Bias opt est (Ave Opt-True Opt): 9.7133
The population variance is: 1225.7222
The maximum value is: 336.5096

The minimum value is: 129.2516

Decision var set § 3

2.0000

8.0000

0.0000

2.0000
# of occurances of this basis: 981
% of overall occurance is: 98.100
AVE. OPTIMUM 1IS: 227.2527

Bias opt est (Ave Opt-True Opt): 11.2526
The population variance is: 1432.8307
The maximum value is: 371.2051

The minimum value is: 120.2687
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Decision var set # 4

8.0000

0.0000

2.0000

0.0000
# of occurances of this basis: 188
% of overall occurance is: 18.800
AVE. OPTIMUM IS: 232.0063

Bias opt est (Ave Opt-True Opt): 16.0063
The population variance is: 1289.7496
The maximum value 1is: 319.6638
The minimum value is: 122.2305
Decision var set # 5

0.0000

8.0000

2.0000

0.0000
# of occurances of this basis: 51
$ of overall occurance 1is: 5.100
AVE. OPTIMUM 1IS: 174.5180
Bias opt est (Ave Opt-True Opt): -41.4821
The population variance is: 595.1209
The maximum value 1is: 222.3652
The minimum value is: 113.8435

Decision var set 6

0.0000
0.0000
4.6667
2.6667
# of occurances of this basis: 47
$ of overall occurance is: 4.700
AVE. OPTIMUM 1IS: 164.8198
Bias opt est (Ave Opt-True Opt): -51.1802
The population variance is: 478.3920
The maximum value is: 223.9326
The minimum value is: 128.0441

Decision var set # 7

0.0000
0.0000
6.0000
0.0000
# of occurances of this basis: 19
% of overall occurance is: 1.900
AVE. OPTIMUM IS: 175.7839
Bias opt est (Ave Opt-True Opt): -40.2161
The population variance is: 1132.7343
The maximum value is: 243.3237
The minimum value is: 127.3116
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PILIYLEIIEIIEI et THE EXTREME POINT trrttttrrgsrrrrrres

NUMBER OF EXT POINTS VISITED IS: 8

Extreme Point # 1
4.0000
0.0000
0.6667
6.6667
# OF EXT PT VISITS ARE: 1001
% OF OVERALL IS: 100.100
AVE. OPTIMUM IS: 207.5924

Bias opt est (Ave Opt-True Opt): -8.4077
TRUE Z* WITH TRUE C IS: 215.3333

TRUE BIAS (Z* - Z optimal): -0.6667
Difference between expected optimal and true
The population variance is: 973.1924
The maximum value is: 304.9121

The minimum value is: 103.5766

Extreme Point # 2

1.0000

11.0000

0.0000

0.0000
# OF BXT PT VISITS ARE: 736
% OF OVERALL IS: 73.600
AVE. OPTIMUM IS: 224.227¢

Bias opt est (Ave Opt-True Opt): 8.2276
TRUE %2* WITH TRUE C IS: 212.0000
TRUE BIAS (Z* - Z optimal): -4.0000
Difference between expected optimal and true
The population variance is: 1152.1857
The maximum value is: 314.2408
The minimum value is: 129.2516
Extreme Point i 3

2.0000

10.0000
0.0000
0.0000

# OF EXT PT VISITS ARE: 176
% OF OVERALL IS: 17.600
AVE. OPTIMUM IS: 231.9267

Bias opt est (Ave Opt-True Opt): 15.9266
TRUE Z* WITH TRUE C IS: 216.0000

TRUE BIAS (Z2* - Z optimal): 0.0000
Difference between expected optimal and true
The population variance is: 1485.4053
The maximum value is: 336.5096

The minimum value is: 129.5463
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Extreme Point # 4
2.0000
8.0000
0.0000
2.0000
# OF EXT PT VISITS ARE: 981
% OF OVERALL IS: 98.100
AVE. OPTIMUM IS: 227.2527

Bias opt est (Ave Opt-True Opt): 11.2526

TRUE Z* WITH TRUE C IS: 166.0000

TRUE BIAS (Z* - % optimal):  -50.0000

Difference between expected optimal and true -61.2527
The population variance is: 1432.8307

The maximum value is: 371.2051

The minimum value is: 120.2687

Bxtreme Point # 5
8.0000
0.0000
2.0000
0.0000
# OF EXT PT VISITS ARE: 188
% OF OVERALL IS: 18.800
AVE. OPTIMUM IS: 232.0063

Bias opt est (Ave Opt-True Opt): 16.0063

TRUE Z* WITH TRUE C IS: 182.0000

TRUE BIAS (%2* - Z optimal): -34.0000

Difference between expected optimal and true -50.0063
The population variance is: 1289.7496

The maximum value is: 319.6638

The minimum value is: 122.2305

Bxtreme Point # 6

0.0000

8.0000

2.0000

0.0000
# OF BEXT PT VISITS ARE: 51
3 OF OVERALL IS: 5.100
AVE. OPTIMUM IS: 174 .5180

Bias opt est (Ave Opt-True Opt): -41.4821

TRUE Z* WITH TRUE C IS: 147.3333

TRUE BIAS (Z* - Z optimal): -68.6667

Difference between expected optimal and true -27.1846
The population variance is: 595.1209

The maximum value is: 222.3652

The minimum value is: 113.8435

Extreme Point # 7
0.0000
0.0000
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4.6667

2.6667
# OF EXT PT VISITS ARE: 47
% OF OVERALL IS: 4.700
AVE. OPTIMUM IS: 164.8198

Bias opt est (Ave Opt-True Opt): -51.1802

TRUE Z2* WITH TRUE C IS: 118.0000

TRUE BIAS (%* - Z optimal): -98.0000

Difference between expected optimal and true -46.8198
The population variance is: 478.3920

The maximum value is: 223.9326

The minimum value is: 128.0441

Extreme Point #¢ 8
0.0000
0.0000
6.0000
0.0000
# OF BXT PT VISITS ARE: 19
% OF OVERALL IS: 1.900
AVE. OPTIMUM IS: 175.7839
Bias opt est (Ave Opt-True Opt): -40.2161

TRUE Z* WITH TRUE C IS: 10.0000
TRUE BIAS (Z* - % optimal): -206.0000
Difference between expected optimal and true -165.7839

The population variance is: 1132.7343
The maximum value is: 243.3237
The minimum value is: 127.3116

PEEIETEEIEEIEY It OVERALL RESULTS !!ltttriaratrrrenrtyse

Overall Mean Optimum is: 9.9972

Overall Bias (Ave Opt-True Opt): -206.0028
The overall sample variance is: 2134 .0967
The overall maximum value is: 371.2051
The overall minimum value is: 0.0000

AVE OPTIMAL PER OBJECTIVE FUNCTION

Mean of Mean Opt per obj funct: 4.6993
The sample var(mean opt): 2.0915
The maximum value is: 10.7572

The minimum value is: 1.6353
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